首页> 外文期刊>Computers & mathematics with applications >High-order time-stepping methods for two-dimensional Riesz fractional nonlinear reaction-diffusion equations
【24h】

High-order time-stepping methods for two-dimensional Riesz fractional nonlinear reaction-diffusion equations

机译:用于二维RIESZ分数非线性反应扩散方程的高阶时间步进方法

获取原文
获取原文并翻译 | 示例

摘要

Anomalous diffusion and long-range spatial interactions in anisotropic media could be captured by considering the Riesz fractional derivatives rather than the classical Laplacian. While analytical solutions of the resulting fractional reaction-diffusion models may not be available, the numerical methods for approximating them are challenging. In this paper, fourth-order L-stable (ETDRK04) and A-stable (ETDRK22) linearly implicit predictor-corrector type time-stepping methods are presented. These methods are implemented on two-dimensional Riesz fractional nonlinear reaction-diffusion equations with smooth and non-smooth initial data. Three types of nonlinear reaction-diffusion models are considered: Allen-Cahn equation with cubic nonlinearity, Fisher's equation with quadratic nonlinearity, and Enzyme Kinetics equation with rational nonlinearity. Fourth-order temporal convergence rate of the methods is proved analytically and computed numerically. Profiles of the numerical solutions corresponding to different orders and rates of diffusion are included. Computational efficiency of the ETDRK04 and ETDRK22 methods over the well known Cox-Matthews ETDRK4 is presented. The superiority of the provided methods, in terms of computational accuracy, efficiency, and reliability, is demonstrated through the numerical experiments. (C) 2020 Elsevier Ltd. All rights reserved.
机译:通过考虑RIESZ分数衍生物而不是古典的拉普拉斯,可以捕获各向异性介质中的异常扩散和远程空间相互作用。虽然所得到的分数反应扩散模型的分析解不可用,但是近似它们的数值方法是具有挑战性的。在本文中,提出了四阶L稳定(ETDRK04)和稳定(ETDRK22)线性隐含的预测器校正器型时间级步骤方法。这些方法在具有平滑和非平滑初始数据的二维RIESZ分数非线性反应扩散方程上实现。考虑了三种类型的非线性反应扩散模型:具有立方非线性的Allen-Cahn方程,Fisher的等式具有二次非线性,以及具有合理非线性的酶动力学方程。分析地证明了该方法的四阶时间收敛速率并在数值上计算。包括对应于不同订单和扩散速率的数值溶液的简档。提出了众所周知的Cox-Matthews ETDRK4上的ETDRK04和ETDRK22方法的计算效率。通过数值实验证明了在计算精度,效率和可靠性方面提供了所提供方法的优越性。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号