首页> 外文期刊>Applied numerical mathematics >Fast compact implicit integration factor method with non-uniform meshes for the two-dimensional nonlinear Riesz space-fractional reaction-diffusion equation
【24h】

Fast compact implicit integration factor method with non-uniform meshes for the two-dimensional nonlinear Riesz space-fractional reaction-diffusion equation

机译:具有非均匀网格的快速紧凑的隐式集成因子方法,用于二维非线性riesz空间 - 分数反应扩散方程

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a fast compact implicit integration factor (FcIIF) method with non-uniform time meshes for solving the two-dimensional nonlinear Riesz space-fractional reaction-diffusion equation. The weighted and shifted Gruewald-Letnikov (WSGD) approximation is employed to the spatial discretization of the equation, and a system of nonlinear ordinary differential equations (ODEs) in matrix form is obtained. Since the cIIF method can provide excellent stability properties with good efficiency by decoupling the treatment of the diffusion and reaction terms, a fast clIF (FcIIF) method with non-uniform time meshes is developed to solve the resultant nonlinear system of ODEs. Compared with the cIIF method, the proposed FcIIF method avoids the direct calculation of dense exponential matrices and requires less computational cost. The stability, accuracy and effectiveness of the proposed method are verified by the linear stability analysis and various numerical experiments.
机译:在本文中,我们提出了一种具有用于求解二维非线性riesz空间反应扩散方程的非均匀时间网格的快速紧凑的隐式积分因子(Fciif)方法。加权和移位的GRUEWALD-LETNIKOV(WSGD)近似用于等式的空间离散化,获得矩阵形式的非线性常微分方程(ODES)的系统。由于Ciif方法通过去耦的处理和反应术语的处理来提供具有良好效率的优异的稳定性,并且开发了一种快速的CLIF(FCIIF)方法,以解决所得的非线性系统的非线性系统。与CIIF方法相比,所提出的FCIIF方法避免了密集指数矩阵的直接计算,并且需要较少的计算成本。通过线性稳定性分析和各种数值实验验证了所提出的方法的稳定性,准确度和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号