首页> 外文期刊>Computers & mathematics with applications >Relationship between the vertex-centered linearity-preserving scheme and the lowest-order virtual element method for diffusion problems on star-shaped polygons
【24h】

Relationship between the vertex-centered linearity-preserving scheme and the lowest-order virtual element method for diffusion problems on star-shaped polygons

机译:顶点居中线性保护方案与星形多边形扩散问题的关系

获取原文
获取原文并翻译 | 示例

摘要

As a generalization of the finite element method, the virtual element method (VEM) has made remarkable achievements in the algorithm and analysis of simulating various problems recently. Vertex-centered linearity-preserving scheme (VLPS, Wu et al., 2016) is a linear finite volume scheme which is currently only applied to the numerical simulation of diffusion problems. In this paper, we study the relationship between VLPS and the lowest-order VEM for diffusion problems on star-shaped polygonal meshes from an algebraic point of view. The global stiffness matrix of VLPS with a special stabilization term coincides with that of the lowest-order VEM while the load terms are generally different. Specifically, we find that the global stiffness matrices of the two methods can be split as the consistency parts and the stability parts, and the consistency parts are the same while the stability parts coincide under some assumptions. As a by-product, a new stability term is obtained for VLPS. Besides, a post-processing procedure is suggested for the lowest-order VEM to preserve the positivity of the cell-centered unknowns and maintain at the same time the local conservation on the primary meshes. The positivity, existence and uniqueness of the cell-centered unknowns are studied. Numerical experiments confirm the theoretical findings and demonstrate the efficiency of the post-processing procedure on various polygonal meshes. (C) 2020 Elsevier Ltd. All rights reserved.
机译:作为有限元方法的概括,虚拟元素方法(VEM)在算法中取得了显着的成果和最近模拟各种问题的分析。以顶点为中心的线性保留方案(VLP,Wu等,2016)是一种线性有限体积方案,目前仅应用于扩散问题的数值模拟。在本文中,我们研究了从代数的角度来看了VLP与星形多边形网格的扩散问题之间的关系。具有特殊稳定术语的VLP的全局刚度矩阵与最低阶VEM的刚度矩阵均匀,而负载术语通常不同。具体地,我们发现两种方法的全局刚度矩阵可以作为一致性部件和稳定性部件分开,并且稳定性部件在一些假设下重合。作为副产物,获得VLP的新稳定项。此外,建议为最低级VEM提出后处理程序,以保持细胞居中未知的阳性,并同时维持主要网格上的局部保护。研究了细胞居未知的阳性,存在和唯一性。数值实验证实了理论发现并证明了各种多边形网格上的后处理程序的效率。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号