首页> 外文期刊>Computers & mathematics with applications >Boundary integral approach for the mixed Dirichlet-Robin boundary value problem for the nonlinear Darcy-Forchheimer-Brinkman system
【24h】

Boundary integral approach for the mixed Dirichlet-Robin boundary value problem for the nonlinear Darcy-Forchheimer-Brinkman system

机译:非线性达西福赫 - Brinkman系统混合Dirichlet-Robin边值问题的边界积分方法

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this paper is to provide the solvability and uniqueness result to the mixed Dirichlet-Robin boundary value problem for the nonlinear Darcy-Forchheimer-Brinkman system in a bounded, two-dimensional Lipschitz domain. First we obtain a well-posedness result for the linear Brinkman system with Dirichlet-Neumann boundary conditions, by reducing the problem to the system of boundary integral equations based on the fundamental solution of the Brinkman system and by analyzing this system employing a variational approach. The result is extended afterwards to the Poisson problem for the Brinkman system and to Dirichlet-Robin boundary conditions, using the Newtonian potential and the linearity of the solution operator. Further, we study the nonlinear Darcy-Forchheimer-Brinkman boundary value problem of Dirichlet and Robin type. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文的目的是为在有界的二维嘴唇尖域的非线性达西 - 前毛线 - Brinkman系统的混合Dirichlet-Robin边值问题提供可解性和唯一性。首先,我们通过将基于Brinkman系统的基本解决方案的边界积分方程的问题和通过分析采用变分别方法来获得具有Dirichlet-Neumann边界条件的线性Brinkman系统的良好良好的结果。结果是使用牛顿潜在和解决方案操作员的线性度的Brinkman系统和Dirichlet-Robin边界条件的Poisson问题延伸到Dirichlet-Robin边界条件。此外,我们研究了Dirichlet和Robin类型的非线性达西 - 前沿 - Brinkman边值问题。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号