首页> 外文期刊>Computers & mathematics with applications >Alternating direction implicit-spectral element method (ADI-SEM) for solving multi-dimensional generalized modified anomalous sub-diffusion equation
【24h】

Alternating direction implicit-spectral element method (ADI-SEM) for solving multi-dimensional generalized modified anomalous sub-diffusion equation

机译:用于求解多维广义改性异常子扩散方程的交替方向隐式光谱元件方法(ADI-SEM)

获取原文
获取原文并翻译 | 示例

摘要

The main aim of the current paper is to solve the multi-dimensional generalized modified anomalous sub-diffusion equation by using a new spectral element method. At first, the time variable has been discretized by a finite difference scheme with second-order accuracy. The stability and convergence of the time-discrete scheme have been investigated. We show that the time-discrete scheme is unconditionally stable and the convergence order is O(tau(2)) in the temporal direction. Secondly, the Galerkin spectral element method has been combined with alternating direction implicit idea to discrete the space variable. The unconditional stability and convergence of the full-discrete scheme have been proved. By developing the proposed scheme, we need to calculate one-dimensional integrals for two-dimensional problems and two-dimensional integrals for three-dimensional problems. Thus, the used CPU time for the presented numerical procedure is lower than the two- and three-dimensional Galerkin spectral element methods. Also, the proposed method is suitable for computational domains obtained from the tensor product. Finally, two examples are analyzed to check the theoretical results. (C) 2019 Elsevier Ltd. All rights reserved.
机译:目前纸张的主要目的是通过使用新的光谱元件方法来解决多维广义改性的异常子扩散方程。首先,通过具有二阶精度的有限差分方案离散时间变量。已经研究了时间离散方案的稳定性和收敛性。我们表明,时间离散方案是无条件稳定的,并且在时间方向上的o(tau(2))是o(tau(2))。其次,Galerkin光谱元件方法已与交替方向隐式想法组合以离散空间变量。已经证明了全离散方案的无条件稳定性和收敛性。通过开发所提出的方案,我们需要计算用于二维问题的一维积分和用于三维问题的二维积分。因此,所呈现的数值过程的使用CPU时间低于双向和三维Galerkin光谱元件方法。此外,所提出的方法适用于从张量产品获得的计算结构域。最后,分析了两个例子以检查理论结果。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号