首页> 外文期刊>Computers & mathematics with applications >Adaptive eigenspace for multi-parameter inverse scattering problems
【24h】

Adaptive eigenspace for multi-parameter inverse scattering problems

机译:用于多参数逆散射问题的自适应eIgenspace

获取原文
获取原文并翻译 | 示例

摘要

A nonlinear optimization method is proposed for inverse scattering problems in the frequency domain, when the unknown medium is characterized by one or several spatially varying parameters. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type method combined with frequency stepping. Instead of a grid-based discrete representation, each parameter is projected to a separate finite-dimensional subspace, which is iteratively adapted during the optimization. Each subspace is spanned by the first few eigenfunctions of a linearized regularization penalty functional chosen a priori. The (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Numerical results illustrate the accuracy and efficiency of the resulting adaptive eigenspace regularization for single and multi-parameter problems, including the well-known Marmousi model from geosciences. (C) 2019 Elsevier Ltd. All rights reserved.
机译:当未知介质的特征在于一个或多个空间变化参数时,提出了一种非线性优化方法,用于频域中的频域中的逆散射问题。时间谐波逆介质问题被配制为PDE受限的优化问题,并通过与频率踩踏的不精确截断牛顿型方法解决。而不是基于网格的离散表示,每个参数投射到单独的有限维子空间,这在优化期间迭代地适应。每个子空间都会通过线性化正则罚款功能的前几个特征功能进行跨越。 (小且缓慢增加)有限数量的特征功能有效地将正则化归因于反演,从而避免了对标准Tikhonov型正则化的需求。数值结果说明了用于单一和多参数问题的所产生的自适应EIGenspace正规化的准确性和效率,包括来自地球科学的众所周知的Marmous模型。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号