首页> 外文期刊>Computers & mathematics with applications >Adaptive eigenspace for multi-parameter inverse scattering problems
【24h】

Adaptive eigenspace for multi-parameter inverse scattering problems

机译:自适应特征空间的多参数逆散射问题

获取原文
获取原文并翻译 | 示例

摘要

A nonlinear optimization method is proposed for inverse scattering problems in the frequency domain, when the unknown medium is characterized by one or several spatially varying parameters. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type method combined with frequency stepping. Instead of a grid-based discrete representation, each parameter is projected to a separate finite-dimensional subspace, which is iteratively adapted during the optimization. Each subspace is spanned by the first few eigenfunctions of a linearized regularization penalty functional chosen a priori. The (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Numerical results illustrate the accuracy and efficiency of the resulting adaptive eigenspace regularization for single and multi-parameter problems, including the well-known Marmousi model from geosciences. (C) 2019 Elsevier Ltd. All rights reserved.
机译:针对未知介质具有一个或多个空间变化参数的特征,提出了一种非线性优化方法来解决频域中的逆散射问题。时谐逆介质问题被公式化为PDE约束优化问题,并通过不精确的截断牛顿型方法与频率步进相结合来解决。代替基于网格的离散表示,将每个参数投影到单独的有限维子空间,该子空间在优化过程中进行迭代调整。每个子空间都由先验选择的线性正则化罚函数的前几个本征函数跨越。有限数量的本征函数可以有效地将正则化引入反演,从而避免了对标准Tikhonov型正则化的需求。数值结果说明了针对单参数和多参数问题的自适应本征空间正则化的准确性和效率,其中包括来自地球科学的著名Marmousi模型。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号