首页> 外文期刊>Computers & mathematics with applications >Enriched two dimensional mixed finite element models for linear elasticity with weak stress symmetry
【24h】

Enriched two dimensional mixed finite element models for linear elasticity with weak stress symmetry

机译:具有弱应力对称性的线性弹性的富集二维混合有限元模型

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this article is to derive and analyze new discrete mixed approximations for linear elasticity problems with weak stress symmetry. These approximations are based on the application of enriched versions of classic Poisson-compatible spaces, for stress and displacement variables, and/or on enriched Stokes-compatible space configurations, for the choice of rotation spaces used to weakly enforce stress symmetry. Accordingly, the stress space has to be adapted to ensure stability. Such enrichment procedures are done via space increments with extra bubble functions, which have their support on a single element (in the case of H-1-conforming approximations) or with vanishing normal components over element edges (in the case of H(div)-conforming spaces). The advantage of using bubbles as stabilization corrections relies on the fact that all extra degrees of freedom can be condensed, in a way that the number of equations to be solved and the matrix structure are not affected. Enhanced approximations are observed when using the resulting enriched space configurations, which may have different orders of accuracy for the different variables. A general error analysis is derived in order to identify the contribution of each kind of bubble increment on the accuracy of the variables, individually. The use of enriched Poisson spaces improves the rates of convergence of stress divergence and displacement variables. Stokes enhancement by bubbles contributes to equilibrate the accuracy of weak stress symmetry enforcement with the stress approximation order, reaching the maximum rate given by the normal traces (which are not affected). (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文的目的是推导和分析具有弱应力对称性的线性弹性问题的新离散混合逼近。这些近似值基于经典Poisson兼容空间的丰富版本的应用,用于应力和位移变量,和/或基于Stokes兼容空间的丰富版本,用于选择用于弱强制应力对称的旋转空间。因此,必须调整应力空间以确保稳定性。这种富集过程是通过具有额外气泡函数的空间增量来完成的,这些气泡函数支持单个元素(在H-1符合近似的情况下)或元素边缘上的正态成分消失(在H(div)的情况下) -一致的空间)。使用气泡作为稳定校正的优势在于,所有多余的自由度都可以被浓缩,这样就不会影响要求解的方程式的数量和矩阵结构。当使用结果丰富的空间配置时,可以观察到增强的近似值,对于不同的变量,其可能具有不同的精度等级。为了识别每种气泡增量对变量精度的贡献,进行了一般误差分析。富集泊松空间的使用提高了应力发散和位移变量的收敛速度。气泡引起的斯托克斯增强有助于使弱应力对称实施的精度与应力逼近阶数保持平衡,达到法线迹线给出的最大速率(不受影响)。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号