首页> 外文期刊>Computers & mathematics with applications >Fractional Kirchhoff-type equation with Hardy-Littlewood-Sobolev critical exponent
【24h】

Fractional Kirchhoff-type equation with Hardy-Littlewood-Sobolev critical exponent

机译:具有Hardy-Littlewood-Sobolev临界指数的分数Kirchhoff型方程

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the following fractional Kirchhoff-type equation:(a + b integral(RN) integral(RN) vertical bar u(x) - u(y)vertical bar(2)/vertical bar x - y vertical bar(N+2s) dxdy) (-Delta)(s)u = (I-alpha * vertical bar u vertical bar(2h,alpha)*) vertical bar u vertical bar(2)(h,alpha)*(-2)u, in R-N,where N >= 3, s is an element of (0, 1), a > 0, b >= 0, alpha is an element of (0, N) and 2(h,alpha)* = N+alpha/N-2s is the Hardy-Littlewood-Sobolev critical exponent, and I, is the Riesz potential. We establish the existence, nonexistence and multiplicity of nontrivial solutions to above equation. (C) 2019 Published by Elsevier Ltd.
机译:在本文中,我们考虑以下分数阶Kirchhoff型方程:(a + b积分(RN)积分(RN)竖线u(x)-u(y)竖线(2)/竖线x-y竖线(N + 2s)dxdy)(-Delta)(s)u =(I-alpha *竖线u竖线(2h,alpha)*)竖线u竖线(2)(h,alpha)*(-2 )u,在RN中,其中N> = 3,s是(0,1)的元素,a> 0,b> = 0,alpha是(0,N)和2(h,alpha)*的元素= N + alpha / N-2s是Hardy-Littlewood-Sobolev临界指数,而I是Riesz势。我们建立了上述方程非平凡解的存在性,不存在性和多重性。 (C)2019由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号