首页> 外文期刊>Computers & mathematics with applications >Superconvergence analysis of nonconforming finite element method for time-fractional nonlinear parabolic equations on anisotropic meshes
【24h】

Superconvergence analysis of nonconforming finite element method for time-fractional nonlinear parabolic equations on anisotropic meshes

机译:各向异性网格上时间分数阶非线性抛物方程的非协调有限元方法的超收敛性分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we prove a novel result of the consistency error estimate with order O(h(2)) for EQ(1)(rot) element (see Lemma 2) on anisotropic meshes. Then, a linearized fully discrete Galerkin finite element method (FEM) is studied for the time-fractional nonlinear parabolic problems, and the superclose and superconvergent estimates of order O(tau + h(2)) in broken H-1-norm on anisotropic meshes are derived by using the proved character of EQ(1)(rot) element, which improve the results in the existing literature. Numerical results are provided to confirm the theoretical analysis. Published by Elsevier Ltd.
机译:在本文中,我们证明了各向异性网格上EQ(1)(rot)元素(请参见引理2)的阶次为O(h(2))的一致性误差估计的新结果。然后,针对时间分数阶非线性抛物线问题,研究了线性化的全离散Galerkin有限元方法(FEM),以及各向异性的H-1范数在阶O(tau + h(2))上的超闭合和超收敛估计网格是通过使用EQ(1)(rot)元素的已证明特性导出的,从而改进了现有文献中的结果。提供数值结果以证实理论分析。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号