首页> 外文期刊>Computers & mathematics with applications >Existence of multiple solutions for nonhomogeneous Schroedinger-Kirchhoff system involving the fractional p-Laplacian with sign-changing potential
【24h】

Existence of multiple solutions for nonhomogeneous Schroedinger-Kirchhoff system involving the fractional p-Laplacian with sign-changing potential

机译:具有符号改变势的分数p-Laplacian系统的非齐次Schroedinger-Kirchhoff系统的多个解的存在性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we prove the existence of multiple solutions for the following Schrodinger-Kirchhoff system involving the fractional p-Laplacian{M(integral integral R-2n vertical bar u(x)-u(y)vertical bar(p)/vertical bar x-y vertical bar(N+ps) dxdy) (-Delta)(p)(s)u+V(x)vertical bar u vertical bar(p-2)u = F-u(x, u, v) + lambda g(x), x epsilon R-N,M(integral integral R-2n vertical bar v(x)-v(y)vertical bar(p)/vertical bar x-y vertical bar(N+ps) dxdy) (-Delta)(p)(s)u+V(x)vertical bar v vertical bar(p-2)v = Fv(x, u, v) + lambda h(x), x epsilon R-N,u(x) - 0, v(x) - 0, as vertical bar x vertical bar where (-Delta)(p)(s) denotes the fractional p-Laplacian of order s epsilon (0, 1), 2 = p infinity, ps N, F-u = partial derivative F/partial derivative u, F-v = partial derivative F/partial derivative v V(x) is allowed to be sign-changing, lambda 0 and g, h : R-N - R is a perturbation. Under some certain assumptions on f, we obtain the existence of multiple solutions for this problem via Ekeland's variational principle and mountain pass theorem. (C) 2019 Elsevier Ltd. All rights reserved. - +infinity,
机译:在本文中,我们证明了以下涉及分数p-Laplacian {M(积分R-2n垂直杆u(x)-u(y)垂直杆(p)/垂直)的Schrodinger-Kirchhoff系统的多重解的存在bar xy竖线(N + ps)dxdy)(-Delta)(p)(s)u + V(x)竖线u竖线(p-2)u = Fu(x,u,v)+λg (x),x epsilon RN,M(积分R-2n垂直线v(x)-v(y)垂直线(p)/垂直线xy垂直线(N + ps)dxdy)(-Delta)(p (s)u + V(x)垂直线v垂直线(p-2)v = Fv(x,u,v)+ lambda h(x),x epsilon RN,u(x)-> 0,v (x)-> 0,作为竖线x竖线,其中(-Delta)(p)(s)表示s epsilon(0,1)的分数p-Laplacian,2 <= p <无穷大,ps 0且g,h:RN-> R是一个扰动。在关于f的某些假设下,我们通过Ekeland的变分原理和山口定理获得了该问题的多个解的存在。 (C)2019 Elsevier Ltd.保留所有权利。 -> +无穷大

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号