首页> 外文期刊>Computers & mathematics with applications >Existence of multiple solutions for nonhomogeneous Schroedinger-Kirchhoff system involving the fractional p-Laplacian with sign-changing potential
【24h】

Existence of multiple solutions for nonhomogeneous Schroedinger-Kirchhoff system involving the fractional p-Laplacian with sign-changing potential

机译:涉及分数P-LAPLACIAN的非均匀施罗德格 - KIRCHHOFF系统多解决方案存在的存在性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we prove the existence of multiple solutions for the following Schrodinger-Kirchhoff system involving the fractional p-Laplacian{M(integral integral R-2n vertical bar u(x)-u(y)vertical bar(p)/vertical bar x-y vertical bar(N+ps) dxdy) (-Delta)(p)(s)u+V(x)vertical bar u vertical bar(p-2)u = F-u(x, u, v) + lambda g(x), x epsilon R-N,M(integral integral R-2n vertical bar v(x)-v(y)vertical bar(p)/vertical bar x-y vertical bar(N+ps) dxdy) (-Delta)(p)(s)u+V(x)vertical bar v vertical bar(p-2)v = Fv(x, u, v) + lambda h(x), x epsilon R-N,u(x) - 0, v(x) - 0, as vertical bar x vertical bar where (-Delta)(p)(s) denotes the fractional p-Laplacian of order s epsilon (0, 1), 2 = p infinity, ps N, F-u = partial derivative F/partial derivative u, F-v = partial derivative F/partial derivative v V(x) is allowed to be sign-changing, lambda 0 and g, h : R-N - R is a perturbation. Under some certain assumptions on f, we obtain the existence of multiple solutions for this problem via Ekeland's variational principle and mountain pass theorem. (C) 2019 Elsevier Ltd. All rights reserved. - +infinity,
机译:在本文中,我们证明了以下涉及分数P-LAPLACIAN {M(积分积分R-2N垂直条U(x)-u(y)垂直条/垂直条件/垂直条条XY垂直条(n + ps)dxdy)(-delta)(p)(s)U + v(x)垂直条U垂直条(p-2)u = fu(x,u,v)+ lambda g (x),x epsilonrn,m(积分积分R-2n垂直条V(x)-v(y)垂直杆(p)/垂直条xy垂直条(n + ps)dxdy)(-delta)(p )(s)u + v(x)垂直条V垂直条(p-2)v = fv(x,u,v)+ lambda h(x),x epsilonrn,u(x) - > 0,v (x) - > 0,作为垂直条x垂直条,其中(-delta)(p)(p)表示顺序的分数p-laplacian(0,1),2 <= p 0和G,H:RN - > R是扰动。在F的某些某些假设下,我们通过ekeland的变分原理和山公定理获得了对此问题的多种解决方案的存在。 (c)2019 Elsevier Ltd.保留所有权利。 - > +无限,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号