首页> 外文期刊>Computers & mathematics with applications >Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3 + 1 )-dimensional generalized Kadomtsev-Petviashvili equation in a fluid
【24h】

Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3 + 1 )-dimensional generalized Kadomtsev-Petviashvili equation in a fluid

机译:流体中(3 +1)维广义Kadomtsev-Petviashvili方程的暗呼吸波,暗团波和团波孤子相互作用

获取原文
获取原文并翻译 | 示例

摘要

Fluids are seen in a wide range of disciplines, including mechanical, civil, chemical and biomedical engineering, geophysics, astrophysics and biology. In this paper, we investigate a (3 + 1)-dimensional generalized Kadomtsev-Petviashvili equation for the long water waves and small-amplitude surface waves with the weak nonlinearity, weak dispersion and weak perturbation in a fluid. Breather-wave, lump-wave and lump wave-soliton solutions are derived under certain conditions via the Hirota method. With h(1)h(2)(-1) 0, where h(1) and h(2) represent the coefficients of dispersion and nonlinearity, respectively, we obtain the dark breather wave and lump wave. We observe the effects of h(1), h(2), h(4), h(6) and h(8) on the dark breather wave and lump wave, where h(6) is the perturbed effect, h(4) and h(8) stand for the disturbed wave velocity effects corresponding to they and z coordinates: h(1) and h(2) influence the amplitude of the dark breather wave: h(1), h(4) and h(8) influence the distance between the adjacent valleys of the dark breather wave; h(1), h(4), h(6) and h(8) influence the location of the dark breather wave; h(2), h(4), h(6) and h 8 influence the amplitude of the dark lump wave; h(1), h(4) and h(8) influence the width of the dark lump wave; h(4), h(6) and h(8) influence the location of the dark lump wave. When h(1)h(2)(-1) 0, we present the fusion between a bright lump wave and one bright soliton as well as fission of one bright soliton. We also observe the fusion between a dark lump wave and one dark soliton as well as fission of one dark soliton with h(1)h(2)(-1) 0. (C) 2019 Elsevier Ltd. All rights reserved.
机译:流体在机械,土木,化学和生物医学工程,地球物理学,天体物理学和生物学等广泛学科中都有应用。在本文中,我们研究了长(3 +1)维广义Kadomtsev-Petviashvili方程,用于长水波和小振幅表面波,其在流体中具有弱非线性,弱色散和弱摄动。通过Hirota方法在某些条件下导出了喘息波,总波和总波孤子解。当h(1)h(2)(-1)<0时,其中h(1)和h(2)分别代表色散系数和非线性系数,我们得到了暗呼吸波和团状波。我们观察到h(1),h(2),h(4),h(6)和h(8)对暗呼吸波和集总波的影响,其中h(6)是扰动效应h( 4)和h(8)代表与它们相对应的扰波速度效应​​,并且z坐标:h(1)和h(2)影响暗呼吸波的幅度:h(1),h(4)和h (8)影响暗呼吸波相邻谷之间的距离; h(1),h(4),h(6)和h(8)影响暗呼吸波的位置; h(2),h(4),h(6)和h 8影响暗团波的幅度; h(1),h(4)和h(8)影响暗团波的宽度; h(4),h(6)和h(8)影响暗团波的位置。当h(1)h(2)(-1)> 0时,我们给出了一个亮团波与一个亮孤子之间的融合以及一个亮孤子的裂变。我们还观察到暗团波和一个暗孤子之间的融合以及一个暗孤子的裂变(h(1)h(2)(-1)> 0.)(C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号