首页> 外文期刊>Computers & mathematics with applications >Conjugate heat transfer through nano scale porous media to optimize vacuum insulation panels with lattice Boltzmann methods
【24h】

Conjugate heat transfer through nano scale porous media to optimize vacuum insulation panels with lattice Boltzmann methods

机译:通过晶格玻尔兹曼方法结合通过纳米级多孔介质的传热,以优化真空绝热板

获取原文
获取原文并翻译 | 示例

摘要

Due to reduced thermal conductivity, vacuum insulation panels (VIPs) provide significant thermal insulation performance. Our novel vacuum panels operate at reduced pressure and are filled with a powder of precipitated silicic acid to further hinder convection and provide static stability against atmospheric pressure. To obtain an in depth understanding of heat transfer mechanisms, their interactions and their dependencies inside VIPs, detailed microscale simulations are conducted.Particle characteristics for silica are used with a discrete element method (DEM) simulation, using open source software Yade-DEM, to generate a periodic compressed packing of precipitated silicic acid particles. This aggregate packing is then imported into OpenLB (openlb.net) as a fully resolved geometry, and used to study the effects on heat transfer at the microscale. A three dimensional Lattice Boltzmann method (LBM) for conjugated heat transfer is implemented with open source software OpenLB, which is extended to include radiative heat transport. The infrared intensity distribution is solved and coupled with the temperature through the emissivity, absorption and scattering of the studied media using the radiative transfer equation by means of LBM. This new holistic approach provides a distinct advantage over similar porous media approaches by providing direct control and tuning of particle packing characteristics such as aggregate size, shape and pore size distributions and studying their influence directly on conduction and radiation independently. Our aim is to generate one holistic tool which can be used to generate silica geometry and then simulate automatically the thermal conductivity through the generated geometry. (C) 2018 Elsevier Ltd. All rights reserved.
机译:由于导热系数降低,真空隔热板(VIP)提供了显着的隔热性能。我们的新型真空面板在减压下运行,并填充有沉淀的硅酸粉末,以进一步阻止对流并提供针对大气压的静态稳定性。为了深入了解传热机理,它们之间的相互作用及其在VIP内部的依赖性,进行了详细的微观模拟。使用开源软件Yade-DEM,通过离散元素方法(DEM)模拟了二氧化硅的颗粒特征,产生沉淀硅酸颗粒的周期性压缩堆积。然后,将这种骨料包装以完全解析的几何形状导入OpenLB(openlb.net),并用于研究对微观尺度传热的影响。利用开源软件OpenLB实现了用于共轭传热的三维Lattice Boltzmann方法(LBM),该软件已扩展为包括辐射传热。通过LBM的辐射传递方程,通过研究介质的发射率,吸收率和散射来解决红外强度分布并与温度耦合。通过提供直接控制和调整颗粒堆积特性(例如聚集体尺寸,形状和孔径分布)并直接研究其对传导和辐射的影响,这种新的整体方法相对于类似的多孔介质方法具有明显的优势。我们的目标是生成一个整体工具,该工具可用于生成二氧化硅几何图形,然后通过生成的几何图形自动模拟热导率。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号