首页> 外文期刊>Heat and mass transfer >Numerical study on the application of vacuum insulation panels and a latent heat storage for refrigerated vehicles with a large Eddy lattice Boltzmann method
【24h】

Numerical study on the application of vacuum insulation panels and a latent heat storage for refrigerated vehicles with a large Eddy lattice Boltzmann method

机译:大型涡格子玻尔兹曼方法在冷藏车真空隔热板和潜热储存中的应用数值研究。

获取原文
获取原文并翻译 | 示例
           

摘要

The development of sustainable trucks has drawn a lot of attention lately. However, the reduction of fuel consumption and emissions related to deep frozen food transports has not yet been satisfactorily considered. In this paper, a thermal Large Eddy Lattice Boltzmann Method (LES-LBM) is applied to investigate two concepts for optimized refrigerated vehicles: (a) the inclusion of vacuum insulation panels (VIP) in the refrigerated body's walls and (b) the introduction of a latent heat storage (LHS) to exchange fuel-driven air conditioning (AC), both with conveniently worth while potential to decrease fuel consumption and related emissions. The present numerical method allows for an accurate and efficient transient conjugate heat transfer simulation including the spatial and temporal resolution of the temperature distribution inside the insulation walls and the cargo in addition to the turbulent surrounding air flow induced by the AC. The present concept of VIP inclusion is found capable of halving the required cooling energy. In addition, it effectively reduces the variations in the temperature of the chilled goods during cooling operation, which is an important measure of the quality of the refrigerated body. The reduced required cooling energy is further found to enable the AC system to be replaced by a LHS mounted near the top of the refrigerator body and an additional ventilation system of lower total capacity. A comparison between simulations with conventional AC and LHS is conducted concerning the temperature homogeneity of loaded deep frozen food products. It is shown that a slight flow around the refrigerated goods is necessary and the maximum downtime of the AC system is 8 min in case of combined PUR and VIP insulation and 11 min in case of an additional LHS.
机译:可持续卡车的发展近来引起了很多关注。但是,尚未令人满意地考虑到减少与深层冷冻食品运输有关的燃料消耗和排放。在本文中,热大涡格子玻尔兹曼热方法(LES-LBM)用于研究优化冷藏车的两个概念:(a)在冷藏车体的壁中包括真空隔热板(VIP),以及(b)介绍潜热存储(LHS)来交换燃料驱动的空调(AC),既具有便利的价值,又可以减少燃料消耗和相关排放。本数值方法允许进行准确而有效的瞬态共轭换热模拟,除了由AC引起的湍流周围气流外,还包括隔热壁和货物内部温度分布的时空分辨率。发现包含VIP的当前概念能够将所需的冷却能量减半。另外,它有效地降低了冷却操作期间冷藏物品的温度变化,这是冷藏体质量的重要指标。还发现减少了所需的冷却能量,从而使交流系统可以由安装在冰箱主体顶部附近的LHS和具有较低总容量的附加通风系统代替。在传统的AC和LHS的模拟之间进行了比较,涉及装载的速冻食品的温度均匀性。结果表明,冷藏货物周围需要有少量流动,如果将PUR和VIP绝缘材料组合使用,则AC系统的最大停机时间为8分钟,而如果附加LHS,则AC系统的最大停机时间为11分钟。

著录项

  • 来源
    《Heat and mass transfer》 |2020年第4期|1189-1201|共13页
  • 作者

  • 作者单位

    Lattice Boltzmann Research Group (LBRG) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany Institute for Mechanical Process Engineering and Mechanics (MVM) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany;

    Institute for Technical Chemistry (ITC) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany;

    Center for Mass Spectrometry and Optical Spectroscopy (CeMOS) University of Applied Sciences Mannheim Mannheim Germany;

    Institute for Mechanical Process Engineering and Mechanics (MVM) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany;

    Lattice Boltzmann Research Group (LBRG) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany Institute for Mechanical Process Engineering and Mechanics (MVM) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany Institute for Applied and Numerical Mathematics (IANM) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号