首页> 外文会议>ASME Fluids Engineering Division Meeting;ASME Heat Transfer Conference;International Conference on Nanochannels, Microchannels and Minichannels >NUMERICAL SIMULATION OF HEAT CONDUCTION PROBLEMS WITH THE LATTICE BOLTZMANN METHOD (LBM) AND DISCRETE BOLTZMANN METHOD (DBM): A COMPARATIVE STUDY
【24h】

NUMERICAL SIMULATION OF HEAT CONDUCTION PROBLEMS WITH THE LATTICE BOLTZMANN METHOD (LBM) AND DISCRETE BOLTZMANN METHOD (DBM): A COMPARATIVE STUDY

机译:晶格Boltzmann方法(LBM)和离散Boltzmann方法(DBM)的热传导问题的数值模拟(DBM):比较研究

获取原文

摘要

Unlike Fourier's law, which is built upon the continuum assumption and constitutive equation of energy conservation, kinetic models study the transport phenomena from a more fundamental level and in a more generalized way. The Boltzmann equation (BE), which is one type of kinetic model, is a generalized transport model that can solve any advection-diffusion problem regardless of whether such a problem is advection-dominated or diffusion-dominated. Although the BE has been successfully applied to model fluid transport, which is an advection-dominated process, in this paper, in order to demonstrate the generality of the BE, heat conduction, which is a diffusion-only process, is simulated by two numerical derivatives of the BE: the lattice Boltzmann method (LBM) and the discrete Boltzmann method (DBM). The DBM model presented in this paper is unique in the way that the BE is solved on complete unstructured grids with the finite volume method. Therefore, it is named the finite volume discrete Boltzmann method (FVDBM). Two two-dimensional heat conduction problems with different domain geometries and boundaiy conditions are simulated by both the LBM and FVDBM and quantitatively compared. From that comparison, it is found that the FVDBM produces a higher level of accuracy than the LBM for problems with curved boundaries, while maintaining the same accuracy as the LBM for problems with straight boundaries. The advantage displayed by the FVDBM approach is the direct result of a more accurate reconstruction of curved boundaries by the utilization of unstructured grids, versus the Cartesian grids necessary for the LBM.
机译:与傅里叶的法律不同,这是基于连续的假设和节能本构方程,动力学模型从更基本的水平和更广泛的方式研究运输现象。作为一种动力学模型的Boltzmann等式(BE)是一种广义传输模型,可以解决任何平流扩散问题,无论是对这种问题是否正常主导或扩散主导的。虽然已成功应用于模型流体运输,但是在本文中是一种平流主导的过程,为了证明是即,导热的一般性,即仅扩散过程,通过两个数值模拟衍生物是:格子Boltzmann方法(LBM)和离散Boltzmann方法(DBM)。本文呈现的DBM模型在具有有限体积法的完整非结构化网格上求解的方式是独一无二的。因此,它被命名为有限音量离散Boltzmann方法(FVDBM)。通过LBM和FVDBM和定量比较,模拟了不同域几何和边缘条件的两维导热问题。从该比较来看,发现FVDBM产生比曲线边界问题的LBM更高的精度水平,同时保持与直边界问题的相同的精度。 FVDBM方法显示的优势是通过利用非结构化网格来更准确地重建弯曲边界的直接结果,而LBM所需的笛卡尔栅格与笛卡尔栅格相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号