首页> 外文期刊>Computers & mathematics with applications >Numerical integration for nonlinear problems of the finite cell method using an adaptive scheme based on moment fitting
【24h】

Numerical integration for nonlinear problems of the finite cell method using an adaptive scheme based on moment fitting

机译:基于矩量拟合的自适应方案对有限元方法非线性问题的数值积分

获取原文
获取原文并翻译 | 示例

摘要

Fictitious domain methods such as the finite cell method simplify the discretization process significantly as the mesh is decoupled from the geometrical description. However, this simplification in the mesh generation results in broken cells, which is why special integration methods are required. Usually, adaptive integration schemes are applied resulting in a large number of integration points and, thus, an expensive numerical integration especially for nonlinear applications. To perform the numerical integration more efficiently, we propose an adaptive integration method using moment fitting. Thereby, we present a moment fitting approach based on Lagrange polynomials through Gauss-Legendre points to circumvent having to solve the moment fitting equation system. The performance of this integration method is shown by studying several numerical examples of the finite cell method for small and large strain problems in elastoplasticity. (C) 2018 Elsevier Ltd. All rights reserved.
机译:虚拟域方法(例如有限元方法)由于网格与几何描述分离而大大简化了离散化过程。但是,网格生成的这种简化会导致单元破裂,这就是为什么需要特殊的集成方法的原因。通常,采用自适应积分方案会产生大量积分点,因此会产生昂贵的数值积分,尤其是对于非线性应用而言。为了更有效地执行数值积分,我们提出了一种使用矩量拟合的自适应积分方法。因此,我们提出了一种基于拉格朗日多项式并通过高斯-勒根德(Gauss-Legendre)点的矩量拟合方法,从而避免了必须解决矩量拟合方程组的问题。通过研究有限元方法在弹塑性中大小应变问题上的几个数值示例,可以显示这种集成方法的性能。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号