首页> 外文期刊>Computers & mathematics with applications >The application of a unified Bayesian stopping criterion in competing parallel algorithms for global optimization
【24h】

The application of a unified Bayesian stopping criterion in competing parallel algorithms for global optimization

机译:统一贝叶斯停止准则在竞争并行算法全局优化中的应用

获取原文
获取原文并翻译 | 示例

摘要

The unconstrained global programming problem is addressed using a multistart, multi-algorithm infrastructure, in which different algorithms compete in parallel for a contribution towards a single global stopping criterion, denoted the unified Bayesian global stopping criterion.The use of different algorithms is motivated by the observation that no single (global) optimization algorithm consistently outperforms all other algorithms when applied to large sets of problems from different classes.The Bayesian stopping criterion is based on the single assumption that the probability of each algorithm converging to the global optimum is at least as large as the probability of convergence to any other local minimum. This assumption is often valid in the case of practical problems of physical origin (e.g., determining physical configurations corresponding to minimum potential energy). Results for parallel clusters of up to 128 machines are presented. (C) 2004 Elsevier Ltd. All rights reserved.
机译:无约束的全局编程问题是使用多起点,多算法的基础结构来解决的,在该基础结构中,不同的算法并行竞争以争夺对单个全局停止标准(表示为统一的贝叶斯全局停止标准)的贡献。观察到,当应用于不同类别的大问题集时,没有任何一种(全局)优化算法能够始终胜过所有其他算法。贝叶斯停止准则基于一个单一假设,即每个算法收敛到全局最优的概率至少为与收敛到任何其他局部最小值的可能性一样大。在物理上的实际问题(例如,确定与最小势能相对应的物理构型)的情况下,该假设通常是有效的。给出了多达128台计算机的并行集群的结果。 (C)2004 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号