首页> 外文期刊>Computers & mathematics with applications >Combinations of collocation and finite-element methods for Poisson's equation
【24h】

Combinations of collocation and finite-element methods for Poisson's equation

机译:泊松方程的搭配和有限元方法的组合

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we provide a framework of combinations of collocation method (CM) with the finite-element method (FEM). The key idea is to link the Galerkin method to the least squares method which is then approximated by integration approximation, and led to the CM. The new important uniformly V-h(0)-elliptic inequality is proved. Interestingly, the integration approximation plays a role only in satisfying the uniformly V-h(0)-elliptic inequality. For the combinations of the finite-element and collocation methods (FEM-CM), the optimal convergence rates can be achieved. The advantage of the CM is to formulate easily linear algebraic equations, where the associated matrices are positive definite but nonsymmetric. We may also solve the algebraic equations of FEM and the collocation equations directly by the least squares method, thus, to greatly improve numerical stability. Numerical experiments are also carried for Poisson's problem to support the analysis. Note that the analysis in this paper is distinct from the existing literature, and it covers a large class of the CM using various admissible functions, such as the radial basis functions, the Sine functions, etc. (c) 2006 Elsevier Ltd. All rights reserved.
机译:在本文中,我们提供了组合方法(CM)与有限元方法(FEM)组合的框架。关键思想是将Galerkin方法与最小二乘法联系起来,然后通过积分逼近法将其逼近,并引入CM。证明了新的重要的一致V-h(0)-椭圆不等式。有趣的是,积分近似仅在满足均匀V-h(0)-椭圆不等式中起作用。对于有限元和配置方法(FEM-CM)的组合,可以实现最佳收敛速度。 CM的优点是易于公式化线性代数方程,其中相关矩阵为正定但非对称的。我们也可以通过最小二乘法直接求解有限元的代数方程和搭配方程,从而大大提高数值稳定性。还对泊松问题进行了数值实验以支持分析。请注意,本文中的分析与现有文献不同,它涵盖了使用各种允许函数(例如径向基函数,Sine函数等)的大型CM。(c)2006 Elsevier Ltd.版权所有。保留。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号