首页> 外文期刊>Computers & mathematics with applications >Global asymptotical stability of a second order rational difference equation
【24h】

Global asymptotical stability of a second order rational difference equation

机译:二阶有理差分方程的全局渐近稳定性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate the boundedness, invariant interval, semicycle and global attractivity of all positive solutions of the equation x_(n+1) = α+γx_ (n-1)/A+Bx_n+Cx_(n-1) ,n= 0, 1,..., where the parameters α, γ, A, B, C ∈ (0, ∞) and the initial conditions y-1, y_0 are nonnegative real numbers. We show that if the equation has no prime period-two solutions, then the positive equilibrium of the equation is globally asymptotically stable. Our results solve partially the conjecture proposed by Kulenovic and Ladas in their monograph [M.R. Kulenovic, G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman Hall/CRC, Boca Raton, 2001].
机译:在本文中,我们研究方程x_(n + 1)=α+γx_(n-1)/ A + Bx_n + Cx_(n-1)的所有正解的有界性,不变区间,半周期和全局吸引性, n = 0,1,...,其中参数α,γ,A,B,C∈(0,∞)和初始条件y-1,y_0是非负实数。我们表明,如果该方程没有素数周期二解,则该方程的正平衡是全局渐近稳定的。我们的结果部分解决了Kulenovic和Ladas在其专着中提出的猜想[M.R. Kulenovic,G。Ladas,带有开放问题和猜想的二阶有理差分方程的动力学,查普曼·霍尔/ CRC,博卡拉顿,2001年。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号