首页> 外文期刊>Computers & mathematics with applications >Association rule mining through the ant colony system for National Health Insurance Research Database in Taiwan
【24h】

Association rule mining through the ant colony system for National Health Insurance Research Database in Taiwan

机译:台湾国家健康保险研究数据库通过蚁群系统进行关联规则挖掘

获取原文
获取原文并翻译 | 示例

摘要

In the field of data mining, an important issue for association rules generation is frequent itemset discovery, which is the key factor in implementing association rule mining. Therefore, this study considers the user's assigned constraints in the mining process. Constraint-based mining enables users to concentrate on mining itemsets that are interesting to themselves, which improves the efficiency of mining tasks. In addition, in the real world, users may prefer recording more than one attribute and setting multi-dimensional constraints. Thus, this study intends to solve the multi-dimensional constraints problem for association rules generation. The ant colony system (ACS) is one of the newest meta-heuristics for combinatorial optimization problems, and this study uses the ant colony system to mine a large database to find the association rules effectively. If this system can consider multi-dimensional constraints, the association rules will be generated more effectively. Therefore, this study proposes a novel approach of applying the ant colony system for extracting the association rules from the database. In addition, the multi-dimensional constraints are taken into account. The results using a real case, the National Health Insurance Research Database, show that the proposed method is able to provide more condensed rules than the Apriori method. The computational time is also reduced.
机译:在数据挖掘领域,关联规则生成的一个重要问题是频繁的项目集发现,这是实现关联规则挖掘的关键因素。因此,本研究考虑了用户在挖掘过程中分配的约束。基于约束的挖掘使用户能够专注于自己感兴趣的挖掘项目集,从而提高了挖掘任务的效率。另外,在现实世界中,用户可能更喜欢记录多个属性并设置多维约束。因此,本研究旨在解决关联规则生成的多维约束问题。蚁群系统(ACS)是解决组合优化问题的最新元启发式方法之一,本研究使用蚁群系统挖掘大型数据库以有效地找到关联规则。如果该系统可以考虑多维约束,则将更有效地生成关联规则。因此,本研究提出了一种应用蚁群系统从数据库中提取关联规则的新方法。另外,考虑了多维约束。使用真实案例“国家健康保险研究数据库”进行的结果表明,与Apriori方法相比,该方法能够提供更简洁的规则。计算时间也减少了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号