首页> 外文期刊>Computers & mathematics with applications >Numerical algorithm based on Adomian decomposition for fractional differential equations
【24h】

Numerical algorithm based on Adomian decomposition for fractional differential equations

机译:基于Adomian分解的分数阶微分方程数值算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel algorithm based on Adomian decomposition for fractional differential equations is proposed. Comparing the present method with the fractional Adams method, we use this derived computational method to find a smaller "efficient dimension" such that the fractional Lorenz equation is chaotic. We also apply this new method to the time-fractional Burgers equation with initial and boundary value conditions. Numerical results and computer graphics show that the constructed numerical is efficient.
机译:提出了一种基于Adomian分解的分数阶微分方程新算法。将本方法与分数亚当斯方法进行比较,我们使用此派生的计算方法来找到较小的“有效维”,以使分数Lorenz方程混乱。我们还将这种新方法应用于具有初始值和边界值条件的时间分数Burgers方程。数值结果和计算机图形学表明,所构造的数值是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号