首页> 外文期刊>Computers & mathematics with applications >(H(·,·), η)-accretive operators with an application for solving set-valued variational inclusions in Banach spaces
【24h】

(H(·,·), η)-accretive operators with an application for solving set-valued variational inclusions in Banach spaces

机译:(H(·,·),η)增生算子及其在Banach空间中解集值变分包含的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a new class of accretive operators-(H(·, ·), η)-accretive operators, which generalize many existing monotone or accretive operators. The resolvent operator associated with an (H(·, ·), η)-accretive operator is defined and its Lipschitz continuity is presented. By using the new resolvent operator technique, we also introduce and study a new class of set-valued variational inclusions involving (H(·, ·), η)-accretive operators and construct a new algorithm for solving this class of set-valued variational inclusions. These results are new, and improve and generalize many known corresponding results.
机译:在本文中,我们介绍了一类新的增生算子-(H(·,·),η)-增生算子,它推广了许多现有的单调或增生算子。定义与(H(·,·),η)增生算子相关的可分解算子,并给出其Lipschitz连续性。通过使用新的可分解算子技术,我们还引入并研究了涉及(H(·,·),η)-增生算子的一类新的集值变分包含,并构造了一种新的算法来求解此类集值变分夹杂物。这些结果是新的,可以改进和归纳许多已知的相应结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号