首页> 外文期刊>Computers & mathematics with applications >The numerical method of successive interpolations for two-point boundary value problems with deviating argument
【24h】

The numerical method of successive interpolations for two-point boundary value problems with deviating argument

机译:变参数两点边值问题的连续插值数值方法

获取原文
获取原文并翻译 | 示例

摘要

A new numerical method for two-point boundary value problems associated to differential equations with deviating argument is obtained. The method uses the fixed point technique, the trapezoidal quadrature rule, and the cubic spline interpolation procedure. The convergence of the method is proved without smoothness conditions, the kernel function being Lipschitzian in each argument. The interpolation procedure is used only on the points where the argument is modified. A practical stopping criterion of the algorithm is obtained and the accuracy of the method is illustrated on some numerical examples of the pantograph type.
机译:提出了一种新的数值方法,解决了与变元方程相关的两点边值问题。该方法使用定点技术,梯形正交规则和三次样条插值过程。证明了该方法的收敛性,没有光滑度条件,每个参数的核函数均为Lipschitzian。插值过程仅在修改了参数的点上使用。获得了该算法的实用停止准则,并在受电弓类型的一些数值示例上说明了该方法的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号