首页> 外文期刊>Computers & mathematics with applications >Nearly optimal solution of rational linear systems of equations with symbolic lifting and numerical initialization
【24h】

Nearly optimal solution of rational linear systems of equations with symbolic lifting and numerical initialization

机译:具有符号提升和数值初始化的有理线性方程组的最佳解

获取原文
获取原文并翻译 | 示例

摘要

Hensel's symbolic lifting is a highly effective method for the solution of a general or structured (e.g. Toeplitz or Hankel) linear system of equations with integer or rational coefficients of bounded length. It can handle ill conditioned inputs, for which numerical methods become costly. Lifting amounts to recursive multiplications by vectors of the input coefficient matrices and its precomputed inverse modulo a fixed integer s. Such multiplications only involve small numbers of data movements and arithmetic operations with bounded precision. The known methods for precomputation of the inverse are more costly, however; in particular they involve more data movements. As our remedy for this bottleneck stage we create an auxiliary matrix sharing its inverse modulo s with the input matrix, and we readily compute this inverse by applying numerical iterative refinement, which is a numerical counterpart of lifting. In the case of general unstructured as well as Toeplitz, Hankel, and other popular structured inputs our hybrid algorithms involve a small number of data movements and optimal number of Boolean (that is bitwise) operations (up to a logarithmic factor). We extend the algorithms to nearly optimal computation of polynomial greatest common divisors (gcds), least common multiples (1cms) and Pade approximations, as well as the Berlekamp-Massey reconstruction of linear recurrences. We also cover Newton's lifting for matrix inversion, specialize it to the case of structured input, and combine it with Hensel's to enhance the overall efficiency. Our initialization techniques work for Newton's lifting as well. Furthermore we extend all our lifting algorithms to allow their initialization modulo powers of two, thus implementing them in the binary base.
机译:Hensel的符号提升是一种有效的方法,用于求解具有整数或有理长度限制系数的方程的一般或结构化(例如Toeplitz或Hankel)线性方程组。它可以处理病态的输入,这对于数值方法来说是昂贵的。提升等于输入系数矩阵及其预计算的逆模的向量乘以固定整数s的递归乘法。这样的乘法仅涉及少量的数据移动和具有有限精度的算术运算。然而,已知的用于逆运算的方法更昂贵。特别是它们涉及更多的数据移动。作为此瓶颈阶段的补救措施,我们创建了一个辅助矩阵,该辅助矩阵与输入矩阵共享其反模数,并且我们可以通过应用数值迭代细化来轻松计算此逆,这与提升的数值相对应。在一般非结构化以及Toeplitz,Hankel和其他流行的结构化输入的情况下,我们的混合算法涉及少量的数据移动和最佳数量的布尔(按位)运算(不超过对数因子)。我们将算法扩展到多项式最大公因数(gcds),最小公倍数(1cms)和Pade逼近的近似最佳计算,以及线性递归的Berlekamp-Massey重建。我们还将介绍牛顿对矩阵求逆的提升,将其专门用于结构化输入的情况,并将其与Hensel结合起来以提高整体效率。我们的初始化技术也适用于牛顿的提升。此外,我们扩展了所有提升算法,以允许它们的初始化模幂为2,从而在二进制库中实现它们。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号