首页> 外文期刊>Computers & mathematics with applications >Fast integral equation methods for Rothe's method applied to the isotropic heat equation
【24h】

Fast integral equation methods for Rothe's method applied to the isotropic heat equation

机译:Rothe方法的快速积分方程方法应用于各向同性热方程

获取原文
获取原文并翻译 | 示例

摘要

We present an efficient integral equation approach to solve the forced heat equation, u_t(x) — △)u(x) = F(x, u, t), in a two-dimensional, multiply-connected domain, with Dirichlet boundary conditions. Instead of using an integral equation formulation based on the heat kernel, we discretize in time, first. This approach, known as Rothe's method, leads to a non-homogeneous modified Helmholtz equation that is solved at each time step. We formulate the solution to this equation as a volume potential plus a double layer potential, and both of these potentials are calculated with available tools accelerated by the fast multipole method. For a total of N points in the discretization of the boundary and the domain, the total computational cost per time step is O(N). We demonstrate our approach on the heat equation and the Allen-Cahn equation.
机译:我们提出了一种有效的积分方程方法,用于在二维多重连接域中,在Dirichlet边界条件下求解强迫热方程u_t(x)—△)u(x)= F(x,u,t) 。我们首先使用时间离散化,而不是使用基于热核的积分方程式。这种称为Rothe方法的方法会导致在每个时间步求解非均匀修正的Helmholtz方程。我们将该方程的解决方案公式化为体积电势加双层电势,并使用通过快速多极方法加速的可用工具来计算这两个电势。对于边界和域离散化中的总共N个点,每个时间步的总计算成本为O(N)。我们演示了关于热方程和Allen-Cahn方程的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号