首页> 外文期刊>Journal of Scientific Computing >Fast High-Order Integral Equation Methods for Solving Boundary Value Problems of Two Dimensional Heat Equation in Complex Geometry
【24h】

Fast High-Order Integral Equation Methods for Solving Boundary Value Problems of Two Dimensional Heat Equation in Complex Geometry

机译:求解复杂几何中二维热方程边值问题的快速高阶积分方程方法

获取原文
获取原文并翻译 | 示例
           

摘要

Efficient high-order integral equation methods have been developed for solving boundary value problems of the heat equation in complex geometry in two dimensions. First, the classical heat potential theory is applied to convert such problems to Volterra integral equations of the second kind via the heat layer potentials, where the unknowns are only on the space-time boundary. However, the heat layer potentials contain convolution integrals in both space and time whose direct evaluation requires NS is the total number of discretization points on the spatial boundary and NT is the total number of time steps. In order to evaluate the heat layer potentials accurately and efficiently, they are split into two partsthe local part containing the temporal integration from t- to t and the history part containing the temporal integration from 0 to t-. The local part can be dealt with efficiently using conventional fast multipole type algorithms. For problems with complex stationary geometry, efficient separated sum-of-exponentials approximations are constructed for the heat kernel and used for the evaluation of the history part. Here all local and history kernels are compressed only once. The resulting algorithm is very efficient with quasilinear complexity in both space and time for both interior and exterior problems. For problems with complex moving geometry, the spectral Fourier approximation is applied for the heat kernel and nonuniform FFT is used to speed up the evaluation of the history part of heat layer potentials. The performance of both algorithms is demonstrated with several numerical examples.
机译:已经开发出有效的高阶积分方程方法来解决二维复杂几何形状中热方程的边值问题。首先,经典热势理论通过热层势将此类问题转换为第二类Volterra积分方程,其中未知数仅在时空边界上。然而,热层势在空间和时间上都包含卷积积分,其直接评估需要NS是空间边界上离散点的总数,而NT是时间步长的总数。为了准确有效地评估热层电势,将其分为两个部分:包含从t-到t的时间积分的局部部分和包含从0到t-的时间积分的历史部分。使用常规的快速多极型算法可以有效地处理局部。对于固定几何复杂的问题,为热核构建了有效的分离的指数和,并用于评估历史部分。在这里,所有本地和历史内核仅被压缩一次。对于内部和外部问题,生成的算法在空间和时间上都具有准线性复杂度,非常高效。对于几何形状复杂的问题,将光谱傅里叶逼近应用于热核,并使用非均匀FFT来加快对热层电势历史部分的评估。两种数值示例说明了两种算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号