首页> 外文期刊>Computers & mathematics with applications >Hybrid Taguchi-chaos of multilevel immune and the artificial bee colony algorithm for parameter identification of chaotic systems
【24h】

Hybrid Taguchi-chaos of multilevel immune and the artificial bee colony algorithm for parameter identification of chaotic systems

机译:多级免疫与人工蜂群混合Taguchi-混沌混沌系统参数辨识

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel evolutionary learning algorithm is proposed by hybridizing the Taguchi method, chaos disturbance operation, multilevel immune algorithm (MIA), and artificial bee colony algorithm (ABC). The algorithm is thus called HTCMIABC to estimate the parameter of chaotic systems. The HTCMIABC comprises two main different phases. First, we use the MIA as the recognition phase to balance local and global searches and accelerate the search speed to enhance the evolutionary phase. Second, the evolutionary phase is built on the ABC and chaos disturbance operation to have the capabilities of exploration and exploitation. Moreover, the Taguchi method and crossover operation are inserted between the recognition phase and evolutionary phase for the recombination and diversification of several antibodies to improve the searching ability. Finally, the HTCMIABC algorithm is examined by parameter identification of the nonlinear chaotic system. Simulation results show that the proposed algorithm is more efficient than some typical existing algorithms. The effects of noise and population size are investigated as well.
机译:本文提出了一种新颖的进化学习算法,该算法将Taguchi方法,混沌干扰操作,多级免疫算法(MIA)和人工蜂群算法(ABC)混合在一起。该算法因此被称为HTCMIABC来估计混沌系统的参数。 HTCMIABC包含两个主要的不同阶段。首先,我们将MIA作为识别阶段来平衡本地和全局搜索,并加快搜索速度以增强进化阶段。其次,演化阶段建立在ABC和混沌扰动的基础上,具有勘探和开发的能力。此外,在识别阶段和进化阶段之间插入了Taguchi方法和交叉操作,以使几种抗体重组和多样化,从而提高了搜索能力。最后,通过非线性混沌系统的参数辨识研究了HTCMIABC算法。仿真结果表明,该算法比现有的一些典型算法具有更高的效率。还研究了噪声和人口规模的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号