首页> 外文期刊>Computers & mathematics with applications >A pectoral muscle segmentation algorithm for digital mammograms using Otsu thresholding and multiple regression analysis
【24h】

A pectoral muscle segmentation algorithm for digital mammograms using Otsu thresholding and multiple regression analysis

机译:使用Otsu阈值化和多元回归分析的数字化X线摄片的胸肌分割算法

获取原文
获取原文并翻译 | 示例

摘要

One of the issues when interpreting a mammogram is that the density of a pectoral muscle region is similar to the tumor cells. The appearance of pectoral muscle on medio-lateral oblique (MLO) views of mammograms will increase the false positives in computer aided detection (CAD) of breast cancer. For this reason, pectoral muscle has to be identified and segmented from the breast region in a mammogram before further analysis. The main goal of this paper is to propose an accurate and efficient algorithm of pectoral muscle extraction on MLO mammograms. The proposed algorithm is based on the positional characteristic of pectoral muscle in a breast region to combine the iterative Otsu thresholding scheme and the mathematic morphological processing to find a rough border of the pectoral muscle. The multiple regression analysis (MRA) is then employed on this rough border to obtain an accurate segmentation of the pectoral muscle. The presented algorithm is tested on the digital mammograms from the Mammogram Image Analysis Society (M1AS) database. The experimental results show that the pectoral muscle extracted by the presented algorithm approximately follows that extracted by an expert radiologist.
机译:解释乳房X线照片时的问题之一是,胸肌区域的密度类似于肿瘤细胞。在乳房X光检查的中外侧斜(MLO)视图上出现胸肌会增加乳腺癌的计算机辅助检测(CAD)中的假阳性。因此,在进一步分析之前,必须在乳房X线照片中从胸部区域识别并分割胸肌。本文的主要目的是为MLO乳腺X线照片提出一种准确高效的胸肌提取算法。该算法基于胸肌在胸部区域的位置特征,结合迭代的Otsu阈值化方案和数学形态学处理来找到胸肌的粗糙边界。然后在这个粗糙的边界上进行多元回归分析(MRA),以获得胸肌的精确分割。所提出的算法在乳房X线照片图像分析协会(M1AS)数据库的数字乳房X线照片上进行了测试。实验结果表明,所提算法提取的胸肌与放射线专家提取的近似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号