首页> 外文期刊>International journal of computer vision and iImage processing >Removal of Pectoral Muscle Region in Digital Mammograms using Binary Thresholding
【24h】

Removal of Pectoral Muscle Region in Digital Mammograms using Binary Thresholding

机译:使用二进制阈值去除数字乳腺X线照片中的胸肌区域

获取原文
获取原文并翻译 | 示例

摘要

The pectoral muscle represents a predominant density region in Medio-Lateral Oblique (MLO) views of mammograms, which appears at approximately the same density as the dense tissues of interest in the image and can affect the results of image analysis methods. Therefore, segmentation of pectoral muscle is important in order to limit the search for the breast abnormalities only to the breast region. In this paper, a simple and effective approach is proposed to exclude the pectoral muscle based on binary operation. The performance is analyzed by the Hausdorff Distance Measure (HDM) and also the Mean of A bsolute Error Distance Measure (MAEDM) based on differences between the results receivedfrom the radiologists and by the proposed method. The digital mammogram images are taken from MIAS dataset which contains 322 images in total, out of which the proposed algorithm able to detect and remove the pectoral region from 291 images successfully.
机译:胸肌在乳房X线照片的Mediter-Lateral Oblique(MLO)视图中代表一个主要的密度区域,该区域的密度与图像中感兴趣的密集组织的密度大致相同,并且会影响图像分析方法的结果。因此,为了将对乳房异常的搜索限制在仅乳房区域,对胸肌进行分割很重要。本文提出了一种简单有效的基于二元操作的排除胸肌的方法。可以通过Hausdorff距离测量(HDM)和绝对误差距离测量的均值(MAEDM)来分析性能,这些误差是基于放射科医生和所提出的方法之间的差异得出的。数字化乳腺X线摄影图像是从MIAS数据集中获取的,该数据集总共包含322幅图像,其中提出的算法能够成功地从291幅图像中检测并去除胸膜区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号