首页> 外文期刊>Computers & mathematics with applications >Exponential æ_∞ stable learning method for Takagi-Sugeno fuzzy delayed neural networks: A convex optimization approach
【24h】

Exponential æ_∞ stable learning method for Takagi-Sugeno fuzzy delayed neural networks: A convex optimization approach

机译:高木-Sugeno模糊时滞神经网络的指数æ_∞稳定学习方法:凸优化方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose some new results on stability for Takagi-Sugeno fuzzy delayed neural networks with a stable learning method. Based on the Lyapunov-Krasovskii approach, for the first time, a new learning method is presented to not only guarantee the exponential stability of Takagi-Sugeno fuzzy neural networks with time-delay, but also reduce the effect of external disturbance to a prescribed attenuation level. The proposed learning method can be obtained by solving a convex optimization problem which is represented in terms of a set of linear matrix inequalities (LMIs). An illustrative example is given to demonstrate the effectiveness of the proposed learning method.
机译:在本文中,我们提出了一种采用稳定学习方法的Takagi-Sugeno模糊延迟神经网络稳定性的新结果。首次基于Lyapunov-Krasovskii方法,提出了一种新的学习方法,不仅可以保证具有时滞的Takagi-Sugeno模糊神经网络的指数稳定性,而且可以将外部干扰的影响减小到规定的衰减水平。可以通过解决凸优化问题来获得所提出的学习方法,该凸优化问题用一组线性矩阵不等式(LMI)表示。给出了一个说明性的例子来证明所提出的学习方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号