首页> 外文期刊>Computers, Materials & Continua >A Multiscale Progressive Failure Modeling Methodology for Composites That Includes Fiber Strength Stochastics
【24h】

A Multiscale Progressive Failure Modeling Methodology for Composites That Includes Fiber Strength Stochastics

机译:包含纤维强度随机性的复合材料多尺度渐进破坏建模方法

获取原文
获取原文并翻译 | 示例

摘要

A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/ finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/ TIMETAL 21S metal matrix composite tensile dogbone specimen at 650℃. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.
机译:针对连续纤维复合材料开发了一种多尺度建模方法,该方法将纤维强度的统计分布纳入了多尺度微力学/有限元(FE)耦合分析中。修改后的两参数威布尔累积分布函数用于说明纤维长度对破坏概率的影响,用于表征纤维强度的统计分布。使用NASA微力学分析代码和通用细胞方法(MAC / GMC)进行了参数研究,以评估可变纤维强度对重复单胞(RUC)内局部复合材料破坏以及后续整体破坏的影响。用NASA代码FEAMAC和ABAQUS有限元求解器分析了单向SCS-6 / TIMETAL 21S金属基复合材料张拉狗骨标本在650℃下的渐进破坏。进行了多尺度渐进式破坏分析,以量化空间变化的纤维强度对RUC平均和整体应力应变响应和破坏的影响。最终的复合材料强度和破坏位置的分布(主要在量具部分)与实验观察到的破坏行为合理匹配。预测的复合材料破坏行为表明,对于局部纤维强度的实际分布不显示这种对称性的情况,使用利用全局几何对称性的宏观模型是不合适的。该问题在文献中并未引起太多关注。此外,在特定长度尺度上的模型离散化可能对与多尺度仿真相关的计算成本产生深远影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号