首页> 外文期刊>Computers & Industrial Engineering >Combining a new data classification technique and regression analysis to predict the Cost-To-Serve new customers
【24h】

Combining a new data classification technique and regression analysis to predict the Cost-To-Serve new customers

机译:结合新的数据分类技术和回归分析来预测服务成本新客户

获取原文
获取原文并翻译 | 示例

摘要

Identifying the Cost-To-Serve (CTS) of customers is one of the most challenging problems in Supply Chain Management because of the diversity in their business activities. For the particular case of the industrial gas business, we are interested in predicting the cost to deliver bulk (liquefied) gas to new customers using a multifactor linear regression model. Developing a single model, i.e. analyzing the observations all at once, produces poor prediction results. Therefore prior to the regression analysis, a new supervised learning technique is used to group customers who are similar in some sense. Classes of customers are represented by hyper-boxes and a linear regression model is subsequently built within each class. The combination of data classification and regression is proven to increase the accuracy of the prediction. Two Mixed-Integer-Linear Programming (MILP) models are developed for data classification purposes. Although we are dealing with a supervised learning method, classes are not predefined in our case. Rather, we input a continuous "classification" attribute that is optimally discretized by the MILP's in order to minimize the number of misclassifications. Therefore our data classification model offers a broader range of applications. A number of illustrative examples are used to prove the effectiveness of the proposed approach. © 2011 Elsevier Ltd. All rights reserved. 【Keywords】Data classification MILP Hyper-box Cost-To-Serve Regression analysis Industrial gas business;
机译:由于客户业务活动的多样性,确定客户的服务成本(CTS)是供应链管理中最具挑战性的问题之一。对于工业气体业务的特殊情况,我们有兴趣使用多因素线性回归模型预测将散装(液化)气体交付给新客户的成本。开发单个模型,即一次分析所有观测值,会产生较差的预测结果。因此,在进行回归分析之前,使用了一种新的监督学习技术来对在某种意义上相似的客户进行分组。客户类别由超级框表示,随后在每个类别中构建线性回归模型。数据分类和回归的结合被证明可以提高预测的准确性。为了数据分类,开发了两个混合整数线性编程(MILP)模型。尽管我们正在研究一种有监督的学习方法,但是在我们的案例中,类不是预定义的。而是,我们输入一个连续的“分类”属性,该属性最好由MILP离散化,以最大程度地减少错误分类的次数。因此,我们的数据分类模型提供了更广泛的应用范围。许多说明性示例用于证明所提出方法的有效性。 ©2011 Elsevier Ltd.保留所有权利。 【关键词】数据分类; MILP;超盒子;服务成本;回归分析;工业燃气业务;

著录项

  • 来源
    《Computers & Industrial Engineering》 |2011年第1期|p.184-197|共14页
  • 作者单位

    Department of Industrial and Systems Engineering, 438 Bell Hall, University at Buffalo (SUNY). Buffalo, NY 14260, United States;

    Operations Research, Department of Industrial and Systems Engineering, 438 Bell Hall, University at Buffalo (SUNY), Buffalo, NY 14260, United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号