首页> 外文期刊>IEEE Transactions on Computers >Device-Circuit-Architecture Co-Exploration for Computing-in-Memory Neural Accelerators
【24h】

Device-Circuit-Architecture Co-Exploration for Computing-in-Memory Neural Accelerators

机译:用于计算内存神经加速器的设备电路架构共同探索

获取原文
获取原文并翻译 | 示例

摘要

Co-exploration of neural architectures and hardware design is promising due to its capability to simultaneously optimize network accuracy and hardware efficiency. However, state-of-the-art neural architecture search algorithms for the co-exploration are dedicated for the conventional von-Neumann computing architecture, whose performance is heavily limited by the well-known memory wall. In this article, we are the first to bring the computing-in-memory architecture, which can easily transcend the memory wall, to interplay with the neural architecture search, aiming to find the most efficient neural architectures with high network accuracy and maximized hardware efficiency. Such a novel combination makes opportunities to boost performance, but also brings a bunch of challenges: The optimization space spans across multiple design layers from device type and circuit topology to neural architecture; and the presence of device variation may drastically degrade the neural network performance. To address these challenges, we propose a cross-layer exploration framework, namely NACIM, which jointly explores device, circuit and architecture design space and takes device variation into consideration to find the most robust neural architectures, coupled with the most efficient hardware design. Experimental results demonstrate that NACIM can find the robust neural network with 0.45 percent accuracy loss in the presence of device variation, compared with a 76.44 percent loss from the state-of-the-art NAS without consideration of variation; in addition, NACIM achieves an energy efficiency up to 16.3 TOPs/W, 3.17x higher than the state-of-the-art NAS.
机译:神经架构和硬件设计的共同探索是由于其同时优化网络精度和硬件效率的能力。然而,用于共同探索的最先进的神经结构搜索算法专用于传统的von-neumann计算架构,其性能受到众所周知的存储壁的严重限制。在本文中,我们是第一个带来计算内存架构的,可以轻松超越内存墙,以与神经结构搜索相互作用,旨在找到具有高网络精度和最大化硬件效率的最高效的神经结构。这种新颖的组合使得能够提高性能的机会,但也带来了一堆挑战:优化空间跨多个设计层,从设备类型和电路拓扑到神经结构;并且设备变化的存在可能会急剧地降低神经网络性能。为了解决这些挑战,我们提出了一个跨层探索框架,即Nacim,它共同探索了设备,电路和架构设计空间,并考虑了设备变化,以找到最强大的神经结构,与最有效的硬件设计相结合。实验结果表明,NACIM可以在存在设备变化的情况下发现稳健的神经网络,精度损失0.45%,而最先进的NAS损失的76.44%,而不考虑变化;此外,Nacim实现了高达16.3顶部/型的能量效率,比最先进的NAS高3.17倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号