首页> 外文期刊>Journal of circuits, systems and computers >UL-CNN: An Ultra-Lightweight Convolutional Neural Network Aiming at Flash-Based Computing-In-Memory Architecture for Pedestrian Recognition
【24h】

UL-CNN: An Ultra-Lightweight Convolutional Neural Network Aiming at Flash-Based Computing-In-Memory Architecture for Pedestrian Recognition

机译:UL-CNN:一种超轻型卷积神经网络,旨在用于行人识别的基于闪存的计算内存器架构

获取原文
获取原文并翻译 | 示例

摘要

Pedestrian recognition has achieved the state-of-the-art performance due to the progress of recent convolutional neural network (CNN). However, mainstream CNN models are too complicated to emerging Computing-In-Memory (CIM) architectures for hardware implementation, because enormous parameters and massive intermediate processing results may incur severe "memory bottleneck". This paper proposed a design methodology of Parameter Substitution with Nodes Compensation (PSNC) to significantly reduce parameters of CNN model without inference accuracy degradation. Based on the PSNC methodology, an ultra-lightweight convolutional neural network (UL-CNN) was designed. The UL-CNN model is a specially optimized convolutional neural network aiming at a flash-based CIM architecture (Cony-Flash) and to apply for recognizing person. The implementation result of running UL-CNN on Cony-Flash shows that the inference accuracy is up to 94.7%. Compared to LeNet-5, on the premise of the similar operations and accuracy, the amounts of UL-CNN's parameters are less than 37% of LeNet-5 at the same dataset benchmark. Such parameter reduction can dramatically speed up the training process and economize on-chip storage overhead, as well as save the power consumption of the memory access. With the aid of UL-CNN, the Cony-Flash architecture can provide the best energy efficiency compared to other platforms (CPU, GPU, FPGA, etc.), which consumes only 2.2x 105J to complete pedestrian recognition for one frame.
机译:由于最近的卷积神经网络(CNN)的进展,行人认可实现了最先进的表现。然而,主流CNN模型对于用于硬件实现的新兴的存储器(CIM)架构太复杂,因为巨大的参数和大规模的中间处理结果可能会产生严重的“存储器瓶颈”。本文提出了一种具有节点补偿(PSNC)的参数替换的设计方法,以显着降低CNN模型的参数而无推理精度下降。基于PSNC方法,设计了超轻量级卷积神经网络(UL-CNN)。 UL-CNN模型是一个专门优化的卷积神经网络,旨在基于闪存的CIM架构(Cony-Flash)并申请识别人。在Cony-Flash上​​运行UL-CNN的实现结果表明推理准确性高达94.7%。与Lenet-5相比,在类似操作和准确性的前提下,UL-CNN参数的数量在相同的数据集基准测试中的Lenet-5的参数的数量小于Lenet-5的37%。这种参数减少可以大大加速训练过程并节省片上存储开销,以及节省存储器访问的功耗。借助于UL-CNN,与其他平台(CPU,GPU,FPGA等)相比,Cony-Flash架构可以提供最佳的能效,该平台仅消耗2.2倍105J以完成一帧的行人识别。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号