首页> 外文期刊>IEEE Transactions on Computers >Distributed Training of Support Vector Machine on a Multiple-FPGA System
【24h】

Distributed Training of Support Vector Machine on a Multiple-FPGA System

机译:多FPGA系统支持向量机的分布式训练

获取原文
获取原文并翻译 | 示例

摘要

Support Vector Machine (SVM) is a supervised machine learning model for classification tasks. Training SVM on a large number of data samples is challenging due to the high computational cost and memory requirement. Hence, model training is supported on a high-performance server which typically runs a sequential training algorithm on centralized data. However, as we move towards massive workloads, it will be impossible to store all the data in a centralized manner and expect such sequential training algorithms to scale on traditional processors. Moreover, with the growing demands of real-time machine learning for edge analytics, it is imperative to devise an efficient training framework with relatively cheaper computations and limited memory. Therefore, we propose and implement a first-of-its-kind system of multiple FPGAs as a distributed computing framework comprising up to eight FPGA units on Amazon F1 instances with negligible communication overhead to fully parallelize, accelerate, and scale the SVM training on decentralized data. Each FPGA unit has a pipelined SVM training IP logic core operating at 125 MHz with a power dissipation of 39 Watts for accelerating its allocated computations in the overall training process. We evaluate and compare the performance of the proposed system on five real SVM benchmarks.
机译:支持向量机(SVM)是用于分类任务的监督机器学习模型。由于高计算成本和内存要求,大量数据样本的培训SVM具有挑战性。因此,在高性能服务器上支持模型训练,其通常在集中数据上运行顺序训练算法。然而,正如我们走向大量工作量的那样,不可能以集中方式存储所有数据,并期望这种连续的训练算法在传统处理器上缩放。此外,随着对边缘分析的实时机器学习的需求不断增长,必须使用比较更便宜的计算和记忆有限的有效培训框架设计。因此,我们提出并实施了多个FPGA的一类单类系统,作为分布式计算框架,包括在Amazon F1实例上的分布式计算框架,其通信开销具有可忽略的通信开销,以完全并行化,加速和缩放分散的SVM培训数据。每个FPGA单元都有一个流水线SVM训练IP逻辑核心,以125 MHz运行,功耗为39瓦,以加速其在整体培训过程中的分配计算。我们评估并比较建议系统在五个真实SVM基准测试中的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号