首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Fast and Communication-Efficient Algorithm for Distributed Support Vector Machine Training
【24h】

Fast and Communication-Efficient Algorithm for Distributed Support Vector Machine Training

机译:用于分布式支持向量机训练的快速和通信高效算法

获取原文
获取原文并翻译 | 示例

摘要

Support Vector Machines (SVM) are widely used as supervised learning models to solve the classification problem in machine learning. Training SVMs for large datasets is an extremely challenging task due to excessive storage and computational requirements. To tackle so-called big data problems, one needs to design scalable distributed algorithms to parallelize the model training and to develop efficient implementations of these algorithms. In this paper, we propose a distributed algorithm for SVM training that is scalable and communication-efficient. The algorithm uses a compact representation of the kernel matrix, which is based on the QR decomposition of low-rank approximations, to reduce both computation and storage requirements for the training stage. This is accompanied by considerable reduction in communication required for a distributed implementation of the algorithm. Experiments on benchmark data sets with up to five million samples demonstrate negligible communication overhead and scalability on up to 64 cores. Execution times are vast improvements over other widely used packages. Furthermore, the proposed algorithm has linear time complexity with respect to the number of samples making it ideal for SVM training on decentralized environments such as smart embedded systems and edge-based internet of things, IoT.
机译:支持向量机(SVM)被广泛用作监督学习模型,以解决机器学习中的分类问题。由于过多的存储和计算要求,大型数据集的培训SVM是一个极其具有挑战性的任务。为了解决所谓的大数据问题,需要设计可扩展的分布式算法以并行化模型培训并开发这些算法的有效实现。在本文中,我们提出了一种用于SVM训练的分布式算法,其可扩展和通信效率。该算法使用基于低秩近似的QR分解的内核矩阵的紧凑表示,以减少训练阶段的计算和存储要求。这伴随着算法的分布式实施所需的通信所需的相当大。高达500万个样本的基准数据集的实验表明,最多64个核心的沟通开销和可扩展性忽略不计。执行时间是对其他广泛使用的包的巨大改进。此外,所提出的算法具有关于样本数量的线性时间复杂度,使其成为SVM对分散环境的SVM培训的理想选择,例如智能嵌入式系统和基于边缘的内容,IOT。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号