首页> 外文期刊>IEEE Transactions on Computers >MViD: Sparse Matrix-Vector Multiplication in Mobile DRAM for Accelerating Recurrent Neural Networks
【24h】

MViD: Sparse Matrix-Vector Multiplication in Mobile DRAM for Accelerating Recurrent Neural Networks

机译:MVID:移动DRAM中的稀疏矩阵矢量乘法,用于加速复发性神经网络

获取原文
获取原文并翻译 | 示例

摘要

Recurrent Neural Networks (RNNs) spend most of their execution time performing matrix-vector multiplication (MV-mul). Because the matrices in RNNs have poor reusability and the ever-increasing size of the matrices becomes too large to fit in the on-chip storage of mobile/IoT devices, the performance and energy efficiency of MV-mul is determined by those of main-memory DRAM. Therefore, computing MV-mul within DRAM draws much attention. However, previous studies lacked consideration for the matrix sparsity, the power constraints of DRAM devices, and concurrency in accessing DRAM from processors while performing MV-mul. We propose a main-memory architecture called MViD, which performs MV-mul by placing MAC units inside DRAM banks. For higher computational efficiency, we use a sparse matrix format and exploit quantization. Because of the limited power budget for DRAM devices, we implement the MAC units only on a portion of the DRAM banks. We architect MViD to slow down or pause MV-mul for concurrently processing memory requests from processors while satisfying the limited power budget. Our results show that MViD provides 7.2x higher throughput compared to the baseline system with four DRAM ranks (performing MV-mul in a chip-multiprocessor) while running inference of Deep Speech 2 with a memory-intensive workload.
机译:经常性的神经网络(RNNS)花费大部分执行时间执行矩阵矢量乘法(MV-MUL)。因为RNN中的矩阵具有可重复使用性可差,并且矩阵的不断增长的尺寸变得太大,以适应移动/物联网设备的片上存储,MV-MUL的性能和能量效率由主 - 记忆DRAM。因此,在DRAM中计算MV-MUL非常关注。然而,以前的研究缺乏对矩阵稀疏性的考虑,DRAM设备的功率约束以及在执行MV-MUL时从处理器访问DRAM的并发性。我们提出了一个名为MVID的主内存架构,通过将MAC单元放置在DRAM Banks内进行MV-MUL。为了更高的计算效率,我们使用稀疏矩阵格式并利用量化。由于DRAM设备的电力预算有限,我们仅在DRAM银行的一部分上实现MAC单元。我们架构师MVID慢慢地减慢或暂停MV-MUL,以便在满足有限的电力预算的同时同时处理来自处理器的存储器请求。我们的结果表明,与具有四个DRAM等级(在芯片 - 多处理器中执行MV-MUL的MV-MUL执行MV-MUL)的基线系统相比,MVID提供了7.2倍的吞吐量。随着内存密集型工作负载运行深音2的推动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号