首页> 外文期刊>IEEE Transactions on Computers >Fast Encoding Algorithms for Reed–Solomon Codes With Between Four and Seven Parity Symbols
【24h】

Fast Encoding Algorithms for Reed–Solomon Codes With Between Four and Seven Parity Symbols

机译:具有四个和七个奇偶校验符号的簧片 - 所罗门码的快速编码算法

获取原文
获取原文并翻译 | 示例

摘要

This article describes a fast Reed-Solomon encoding algorithm with four and seven parity symbols in between. First, we show that the syndrome of Reed-Solomon codes can be computed via the Reed-Muller transform. Based on this result, the fast encoding algorithm is then derived. Analysis shows that the proposed approach asymptotically requires 3 XORs per data bit, representing an improvement over previous algorithms. The simulation demonstrates that the performance of the proposed approach improves with the increase of code length and is superior to other methods. In particular, when the parity number is 5, the proposed approach is about two times faster than other cutting-edge methods.
机译:本文介绍了一个快速簧片簧片编码算法,其中包含四个和七个奇偶校验符号。首先,我们表明可以通过簧片迁移变换来计算簧片索偿码的综合症。基于此结果,然后派生快速编码算法。分析表明,所提出的方法渐近地需要每个数据位的3个XOR,代表先前算法的改进。模拟表明,所提出的方法的性能随着代码长度的增加而改善,并且优于其他方法。特别地,当奇偶校验号为5时,所提出的方法比其他尖端方法快三倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号