首页> 外文期刊>IEEE Transactions on Computers >Design of high-speed and cost-effective self-testing checkers for low-cost arithmetic codes
【24h】

Design of high-speed and cost-effective self-testing checkers for low-cost arithmetic codes

机译:低成本算术代码的高速,经济高效的自检检查器的设计

获取原文
获取原文并翻译 | 示例

摘要

Methods for designing self-testing checkers (STCs) for arithmetic error-detecting codes are presented. First, general rules for the design of minimal-level STCs for any error-detecting code are given. The design is illustrated with STCs for 3N+B codes, 0>or=B>or=2. Then the recursive structure of both 3N+B codes and residue/inverse-residue codes with check base A=3 is revealed. The resulting design of STCs is very flexible and universal, in the sense that an iterative, cost-effective, or high-speed version of the checker can be designed for either code. The design approach, unlike previous approaches for arithmetic codes, gives a unified treatment to STCs for nonseparate (3N+B) and separate (residue and inverse residue) codes. The speed and the complexity of the STC for a code from either class with n bits are about the same. Both high-speed checkers (which have up to three gate levels) and cost-effective checkers are faster and require less hardware than analogous checkers proposed for 3N codes and for residue codes with A=3.
机译:提出了用于算术错误检测代码的自检检查器(STC)设计方法。首先,给出了用于任何检错代码的最小级STC设计的一般规则。用3N + B代码的STC(0>或= B>或= 2)说明了该设计。然后揭示了3N + B码和残基/逆残码的递归结构,其校验基为A = 3。从某种意义上说,可以为任一代码设计迭代的,具有成本效益的或高速的检查器,因此,STC的最终设计非常灵活且通用。与先前的算术代码方法不同,该设计方法对非分离(3N + B)和分离(残基和逆残基)代码的STC进行了统一处理。两种类型的n位代码的STC的速度和复杂度都差不多。与为3N代码和A = 3的残差代码建议的类似检查器相比,高速检查器(最多具有三个门级)和具有成本效益的检查器都更快,所需的硬件更少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号