首页> 外文期刊>IEEE Transactions on Computers >Algorithm-based error-detection schemes for iterative solution of partial differential equations
【24h】

Algorithm-based error-detection schemes for iterative solution of partial differential equations

机译:偏微分方程迭代解的基于算法的检错方案

获取原文
获取原文并翻译 | 示例

摘要

Algorithm-based fault tolerance is an inexpensive method of achieving fault tolerance without requiring any hardware modifications. For numerical applications involving the iterative solution of linear systems arising from discretization of various PDEs, there exist almost no fault-tolerant algorithms in the literature. We describe an error-detecting version of a parallel algorithm for iteratively solving the Laplace equation over a rectangular grid. This error-detecting algorithm is based on the popular successive overrelaxation scheme with red-black ordering. We use the Laplace equation merely as a vehicle for discussion; we show how to modify the algorithm to devise error-detecting iterative schemes for solving linear systems arising from discretizations of other PDEs, such as the Poisson equation and a variant of the Laplace equation with a mixed derivative term. We also discuss a modification of the basic scheme to handle situations where the underlying solution domain is not rectangular. We then discuss a somewhat different error-detecting algorithm for iterative solution of PDEs which can be expected to yield better error coverage. We also present a new way of dealing with the roundoff errors which complicate the check phase of algorithm-based schemes. Our approach is based on error analysis incorporating some simplifications and gives high fault coverage and no false alarms for a large variety of data sets. We report experimental results on the error coverage and performance overhead of our algorithm-based error-detection schemes on an Intel iPSC/2 hypercube multiprocessor.
机译:基于算法的容错是一种无需任何硬件修改即可实现容错的廉价方法。对于涉及由各种PDE离散化引起的线性系统迭代解的数值应用,文献中几乎没有容错算法。我们描述了一种用于并行求解矩形网格上的拉普拉斯方程的并行算法的错误检测版本。此错误检测算法基于具有红黑顺序的流行的连续过松弛方案。我们仅将Laplace方程用作讨论的工具;我们展示了如何修改算法以设计错误检测迭代方案,以解决由其他PDE离散化产生的线性系统,例如Poisson方程和带有混合导数项的Laplace方程的变体。我们还将讨论对基本方案的修改,以处理基础解决方案域不是矩形的情况。然后,我们讨论用于PDE迭代解决方案的某种不同的错误检测算法,该算法有望产生更好的错误覆盖率。我们还提出了一种处理舍入误差的新方法,该方法使基于算法的方案的检查阶段变得复杂。我们的方法基于错误分析并结合了一些简化,并提供了很高的故障覆盖率,并且对于各种数据集都没有错误警报。我们报告了有关在英特尔iPSC / 2超立方体多处理器上基于算法的错误检测方案的错误覆盖率和性能开销的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号