首页> 外文期刊>IEEE Transactions on Computers >Low complexity bit-parallel multiplier for GF(2/sup m/) defined by all-one polynomials using redundant representation
【24h】

Low complexity bit-parallel multiplier for GF(2/sup m/) defined by all-one polynomials using redundant representation

机译:通过冗余表示由一个多项式定义的GF(2 / sup m /)的低复杂度位并行乘法器

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new bit-parallel multiplier for the finite field GF(2/sup m/) defined by an irreducible all-one polynomial. In order to reduce the complexity of the multiplier, we introduce a redundant representation and use the well-known multiplication method proposed by Karatsuba. The main idea is to combine the redundant representation and the Karatsuba method to design an efficient bit-parallel multiplier. As a result, the proposed multiplier requires about 25 percent fewer AND/XOR gates than the previously proposed multipliers using an all-one polynomial, while it has almost the same time delay as the previously proposed ones.
机译:本文提出了由不可约的全一多项式定义的有限域GF(2 / sup m /)的新位并行乘数。为了降低乘法器的复杂性,我们引入了冗余表示,并使用了Karatsuba提出的众所周知的乘法方法。主要思想是将冗余表示法和Karatsuba方法相结合,以设计一个有效的位并行乘法器。结果,与使用全一多项式的先前提出的乘法器相比,所提出的乘法器所需的AND / XOR门少约25%,而其时延几乎与先前提出的乘法器相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号