首页> 外文期刊>IEEE Transactions on Computers >New Scheduling Strategies for Randomized Incremental Algorithms in the Context of Speculative Parallelization
【24h】

New Scheduling Strategies for Randomized Incremental Algorithms in the Context of Speculative Parallelization

机译:投机并行化背景下随机增量算法的新调度策略

获取原文
获取原文并翻译 | 示例

摘要

In this work, we address the problem of scheduling loops with dependences in the context of speculative parallelization. We show that the scheduling alternatives are highly influenced by the dependence violation pattern the code presents. We center our analysis in those algorithms where dependences are less likely to appear as the execution proceeds. Particularly, we focus on randomized incremental algorithms, widely used as a much more efficient solution to many problems than their deterministic counterparts. These important algorithms are, in general, hard to parallelize by hand and represent a challenge for any automatic parallelization scheme. Our analysis led us to the development of MESETA, a new scheduling strategy that takes into account the probability of a dependence violation to determine the number of iterations being scheduled. MESETA is compared with existing techniques, including fixed-size chunking (FSC), the only scheduling alternative used so far in the context of speculative parallelization. Our experimental results show a 5.5 percent to 36.25 percent speedup improvement over FSC, leading to a better extraction of the parallelism inherent to randomized incremental algorithms. Moreover, when the cost of dependence violations is too high to obtain speedups, MESETA curves the performance degradation
机译:在这项工作中,我们解决了在推测性并行化的情况下具有依赖关系的调度循环的问题。我们表明,调度替代方案受代码所呈现的依赖关系违反模式的影响很大。我们将分析集中在那些随着执行的进行而不太可能出现依赖的算法中。特别是,我们关注于随机增量算法,与确定性算法相比,它们被广泛用作对许多问题的有效解决方案。通常,这些重要算法很难手动并行化,并且对任何自动并行化方案都构成了挑战。我们的分析引导我们开发了MESETA,这是一种新的调度策略,该策略考虑了依赖冲突的可能性来确定要调度的迭代数。将MESETA与现有技术进行了比较,包括固定大小分块(FSC),这是迄今为止在推测性并行化背景下使用的唯一调度替代方法。我们的实验结果表明,与FSC相比,速度提高了5.5%至36.25%,从而可以更好地提取随机增量算法固有的并行性。此外,当违反依赖关系的成本过高而无法提高速度时,MESETA会降低性能

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号