首页> 外文期刊>IEEE Transactions on Computers >The Convergence-Guaranteed Random Walk and Its Applications in Peer-to-Peer Networks
【24h】

The Convergence-Guaranteed Random Walk and Its Applications in Peer-to-Peer Networks

机译:收敛保证的随机游走及其在对等网络中的应用

获取原文
获取原文并翻译 | 示例

摘要

Network structure construction and global state maintenance are expensive in large-scale, dynamic peer-to-peer (p2p) networks. With inherent topology independence and low state maintenance overhead, random walks have been widely used in such network environments. However, the current uses are limited to unguided or heuristic random walks with no guarantee on their converged node visitation probability distribution. Such a convergence guarantee is essential for strong analytical properties and high performance of many p2p applications. In this paper, we investigate an approach for random walks to converge to application-desired node visitation probability distributions while only requiring information about direct neighbors of each peer. Our approach is guided by the Metropolis-Hastings algorithm that is typically used in Monte Carlo Markov Chain sampling. We examine the effectiveness and practical issues of our approach using three application studies: random membership subset management, search, and load balancing. Both search and load balancing desire random walks with biased node visitation distributions to achieve application-specific analytical features. Our theoretical analysis, simulations, and Internet experiments demonstrate the advantage of our random walks compared with alternative topology-independent index-free approaches.
机译:在大规模的动态对等(p2p)网络中,网络结构的构建和全局状态维护的成本很高。由于固有的拓扑独立性和低状态维护开销,随机游走已广泛用于此类网络环境。但是,当前的使用仅限于非引导或启发式随机游走,无法保证其收敛的节点访问概率分布。这种收敛保证对于许多p2p应用程序的强大分析性能和高性能至关重要。在本文中,我们研究了一种随机游走的方法,以收敛到应用程序所需的节点访问概率分布,而只需要有关每个对等方的直接邻居的信息。我们的方法以Metropolis-Hastings算法为指导,该算法通常在蒙特卡洛马尔可夫链采样中使用。我们使用三个应用研究来研究我们的方法的有效性和实际问题:随机成员子集管理,搜索和负载平衡。搜索和负载平衡都需要具有偏向节点访问分布的随机游走,以实现特定于应用程序的分析功能。我们的理论分析,仿真和Internet实验证明了与其他与拓扑无关的无索引方法相比,随机游走的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号