首页> 外文期刊>IEEE Transactions on Computers >Reduction of Average Path Length in Binary Decision Diagrams by Spectral Methods
【24h】

Reduction of Average Path Length in Binary Decision Diagrams by Spectral Methods

机译:用谱方法减少二元决策图中的平均路径长度

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with static techniques for reducing the Average Path Length (APL) of binary decision diagrams. The APL is proved to be a linear function of a folded autocorrelation function values. It is well known that the APL is sensitive to the reordering of the input variables, the explicit expression of the APL determines an optimal ordering criterion based on the function properties. Moreover, the APL can be further reduced by using linear functions of the input variables. Two linearization procedures for the linearization are presented: a) a minimization procedure using the autocorrelation values (time domain) and b) a minimization algorithm based on the mutual information between the Boolean function and a linear function of the input variables (Walsh spectrum). The time-domain approach outperforms the established information-theory approach. Experimental results show the efficiency of the suggested techniques.
机译:本文讨论了静态技术,用于减少二进制决策图的平均路径长度(APL)。事实证明,APL是折叠的自相关函数值的线性函数。众所周知,APL对输入变量的重新排序很敏感,APL的显式表达式根据函数属性确定最佳排序标准。此外,可以通过使用输入变量的线性函数来进一步降低APL。提出了两种用于线性化的线性化过程:a)使用自相关值(时域)的最小化过程,以及b)基于布尔函数和输入变量的线性函数(沃尔什谱)之间的互信息的最小化算法。时域方法优于已建立的信息理论方法。实验结果表明了所提出技术的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号