首页> 外文OA文献 >Average path length of binary decision diagrams
【2h】

Average path length of binary decision diagrams

机译:二元决策图的平均路径长度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The traditional problem in binary decision diagrams (BDDs) has been to minimize the number of nodes since this reduces the memory needed to store the BDD. Recently, a new problem has emerged: minimizing the average path length (APL). APL is a measure of the time needed to evaluate the function by applying a sequence of variable values. It is of special significance when BDDs are used in simulation and design verification. A main result of this paper is that the APL for benchmark functions is typically much smaller than for random functions. That is, for the set of all functions, we show that the average APL is close to the maximum path length, whereas benchmark functions show a remarkably small APL. Surprisingly, however, typical functions do not achieve the absolute maximum APL. We show that the parity functions are unique in having that distinction. We show that the APL of a BDD can vary considerably with variable ordering. We derive the APL for various functions, including the AND, OR, threshold, Achillesu27 heel, and certain arithmetic functions. We show that the unate cascade functions uniquely achieve the absolute minimum APL.
机译:二进制决策图(BDD)中的传统问题是最小化节点数,因为这会减少存储BDD所需的内存。最近,出现了一个新问题:最小化平均路径长度(APL)。 APL是通过应用一系列变量值来评估功能所需时间的一种度量。当BDD用于仿真和设计验证时,它特别重要。本文的主要结果是,基准函数的APL通常比随机函数的APL小得多。也就是说,对于所有功能的集合,我们表明平均APL接近最大路径长度,而基准功能则显示出非常小的APL。但是,令人惊讶的是,典型功能无法实现绝对最大APL。我们证明奇偶校验功能在具有这种区别方面是唯一的。我们证明了BDD的APL可以随着变量顺序的变化而显着变化。我们推导了各种功能的APL,包括AND,OR,阈值,Achilles跟和某些算术功能。我们表明,合一的级联函数唯一地实现了绝对最小APL。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号