首页> 外文期刊>Computers, IEEE Transactions on >A Geometric Transversals Approach to Analyzing the Probability of Track Detection for Maneuvering Targets
【24h】

A Geometric Transversals Approach to Analyzing the Probability of Track Detection for Maneuvering Targets

机译:几何横向方法分析机动目标跟踪检测的可能性

获取原文
获取原文并翻译 | 示例

摘要

There is considerable precedence in the sensor tracking and estimation literature for modeling maneuvering targets by Markov motion models in order to estimate the target state from multiple, distributed sensor measurements. Although the transition probability density functions of these Markov models are routinely outputted by tracking and estimation algorithms, little work has been done to use them in sensor coordination and control algorithms. This paper presents a geometric transversals approach for representing the probability of track detection by multiple, distributed sensors, as a function of the Markov model transition probabilities. By this approach, the Markov parameters of maneuvering targets that may be detected by the sensors are represented by three-dimensional cones that are finitely generated by the sensors fields-of-view in a spatiotemporal Euclidian space. Then, the problem of deploying a sensor network for the purpose of maximizing the expected number of target detections can be formulated as a nonlinear program that can be solved numerically for the optimal sensor placement. Numerical results show that the optimal sensor placements obtained by this geometric transversals approach significantly outperform greedy, grid, or randomized sensor deployments.
机译:传感器跟踪和估计文献中有相当大的先例,可以通过马尔可夫运动模型对机动目标进行建模,以便从多个分布式传感器测量结果中估计目标状态。尽管这些Markov模型的转移概率密度函数通常是通过跟踪和估计算法输出的,但在传感器协调和控制算法中使用它们的工作很少。本文提出了一种几何横向方法来表示由多个分布式传感器进行的轨迹检测的概率,该方法是马尔可夫模型过渡概率的函数。通过这种方法,可以由传感器检测到的机动目标的马尔可夫参数由三维圆锥体表示,三维圆锥体是由传感器的视场在时空欧几里得空间中有限生成的。然后,为了最大化目标检测的预期数量而部署传感器网络的问题,可以表述为一个非线性程序,可以通过数值方法解决该问题,以实现最佳传感器放置。数值结果表明,通过这种几何横向方法获得的最佳传感器位置明显优于贪婪,网格或随机传感器部署。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号