首页> 外文期刊>Computers, IEEE Transactions on >Resilient and Power-Efficient Multi-Function Channel Buffers in Network-on-Chip Architectures
【24h】

Resilient and Power-Efficient Multi-Function Channel Buffers in Network-on-Chip Architectures

机译:片上网络体系结构中的弹性和高能效多功能通道缓冲器

获取原文
获取原文并翻译 | 示例

摘要

Network-on-Chips (NoCs) are quickly becoming the standard communication paradigm for the growing number of cores on the chip. While NoCs can deliver sufficient bandwidth and enhance scalability, NoCs suffer from high power consumption due to the router microarchitecture and communication channels that facilitate inter-core communication. As technology keeps scaling down in the nanometer regime, unpredictable device behavior due to aging, infant mortality, design defects, soft errors, aggressive design, and process-voltage-temperature variations, will increase and will result in a significant increase in faults (both permanent and transient) and hardware failures. In this paper, we propose —a fault tolerant NoC architecture with Multi-Function Channel (MFC) buffers. The use of MFC buffers and their associated control (link and fault controllers) enhance fault-tolerance by allowing the NoC to dynamically adapt to faults at the link level and reverse propagation direction to avoid faulty links. Additionally, MFC buffers reduce router power and improve performance by eliminating in-router buffering. We utilize a machine learning technique in our link controllers to predict the direction of traffic flow in order to more efficiently reverse links. Our simulation results using real benchmarks and synthetic traffic mixes show that QORE improves speedup by 1.3 and throughput by 2.3 when compared to state-of-the art fault tolerant NoCs designs such as Ariadne and Vicis. Moreover, using Synopsys Design Compiler, we also show that network power in QORE is reduced by 21 percent with minimal control overhead.
机译:片上网络(NoC)迅速成为芯片上不断增加的内核数量的标准通信范例。尽管NoC可以提供足够的带宽并增强可伸缩性,但由于路由器微体系结构和便于内核间通信的通信通道,NoC遭受了高功耗的困扰。随着技术不断缩小规模,由于老化,婴儿死亡率,设计缺陷,软错误,激进的设计以及过程电压-温度变化而导致的不可预测的设备行为将增加,并且会导致故障的显着增加(两者均如此)永久性和暂时性)以及硬件故障。在本文中,我们提出了一种具有多功能通道(MFC)缓冲区的容错NoC架构。 MFC缓冲区及其相关控制(链接和故障控制器)的使用通过允许NoC在链接级别和反向传播方向上动态适应故障来避免错误链接,从而提高了容错能力。此外,MFC缓冲区通过消除路由器内部缓冲来降低路由器的功耗并提高性能。我们在链接控制器中使用机器学习技术来预测流量的方向,以便更有效地反向链接。我们使用实际基准测试和综合流量混合的仿真结果表明,与Ariadne和Vicis等最新的容错NoC设计相比,QORE将速度提高了1.3倍,将吞吐量提高了2.3倍。此外,使用Synopsys Design编译器,我们还显示QORE中的网络功率减少了21%,而控制开销却最小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号