首页> 外文期刊>Computers, IEEE Transactions on >Time-Series Pattern Based Effective Noise Generation for Privacy Protection on Cloud
【24h】

Time-Series Pattern Based Effective Noise Generation for Privacy Protection on Cloud

机译:基于时间序列模式的有效噪声生成,用于云上的隐私保护

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing is proposed as an open and promising computing paradigm where customers can deploy and utilize IT services in a pay-as-you-go fashion while saving huge capital investment in their own IT infrastructure. Due to the openness and virtualization, various malicious service providers may exist in these cloud environments, and some of them may record service data from a customer and then collectively deduce the customer's private information without permission. Therefore, from the perspective of cloud customers, it is essential to take certain technical actions to protect their privacy at client side. Noise obfuscation is an effective approach in this regard by utilizing noise data. For instance, noise service requests can be generated and injected into real customer service requests so that malicious service providers would not be able to distinguish which requests are real ones if these requests’ occurrence probabilities are about the same, and consequently related customer privacy can be protected. Currently, existing representative noise generation strategies have not considered possible fluctuations of occurrence probabilities. In this case, the probability fluctuation could not be concealed by existing noise generation strategies, and it is a serious risk for the customer's privacy. To address this probability fluctuation privacy risk, we systematically develop a novel time-series pattern based noise generation strategy for privacy protection on cloud. First, we analyze this privacy risk and present a novel cluster based algorithm to generate time intervals dynamically. Then, based on these time intervals, we investigate corresponding probability fluctuations and propose a novel time-series pattern based forecasting algorithm. Lastly, based on the forecasting algorithm, our novel noise generation strategy can be presented to withstand the probability fluctuation privacy risk. The simulation evaluation demonstrates that our str- tegy can significantly improve the effectiveness of such cloud privacy protection to withstand the probability fluctuation privacy risk.
机译:提议将云计算作为一种开放且有希望的计算范例,客户可以按需付费的方式部署和利用IT服务,同时节省了对自己IT基础架构的巨额资本投资。由于开放性和虚拟化,各种恶意服务提供商可能会存在于这些云环境中,其中一些可能会记录来自客户的服务数据,然后未经许可共同推论客户的私人信息。因此,从云客户的角度来看,必须采取某些技术措施来保护其在客户端的隐私。在这方面,通过利用噪声数据,噪声混淆是一种有效的方法。例如,可以生成噪声服务请求并将其注入到实际的客户服务请求中,以便如果这些请求的出现概率大致相同,恶意服务提供商将无法区分哪些请求是真实的,因此相关的客户隐私可以是受保护的。当前,现有的代表性噪声产生策略还没有考虑发生概率的可能波动。在这种情况下,现有的噪声生成策略无法掩盖概率波动,这对客户的隐私构成了严重的风险。为了解决这种概率波动的隐私风险,我们系统地开发了一种新颖的基于时间序列模式的噪声生成策略,用于云上的隐私保护。首先,我们分析了这种隐私风险,并提出了一种新颖的基于聚类的算法来动态生成时间间隔。然后,基于这些时间间隔,我们研究了相应的概率波动,并提出了一种新颖的基于时间序列模式的预测算法。最后,基于预测算法,可以提出我们新颖的噪声产生策略,以承受概率波动的隐私风险。仿真评估表明,我们的策略可以显着提高这种云隐私保护的有效性,以承受概率波动的隐私风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号