首页> 外文会议>Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on >A Time-Series Pattern Based Noise Generation Strategy for Privacy Protection in Cloud Computing
【24h】

A Time-Series Pattern Based Noise Generation Strategy for Privacy Protection in Cloud Computing

机译:基于时间序列模式的噪声生成策略,用于云计算中的隐私保护

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing promises an open environment where customers can deploy IT services in a pay-as-you-go fashion while saving huge capital investment in their own IT infrastructure. Due to the openness, various malicious service providers may exist. Such service providers may record service information in a service process from a customer and then collectively deduce the customer's private information. Therefore, from the perspective of cloud computing security, there is a need to take special actions to protect privacy at client sides. Noise obfuscation is an effective approach in this regard by utilising noise data. For instance, it generates and injects noise service requests into real customer service requests so that service providers would not be able to distinguish which requests are real ones if their occurrence probabilities are about the same. However, existing typical noise generation strategies mainly focus on the entire service usage period to achieve about the same final occurrence probabilities of service requests. In fact, such probabilities can fluctuate in a time interval such as three months and may significantly differ than other time intervals. In this case, service providers may still be able to deduce the customers' privacy from a specific time interval although unlikely from the overall period. That is to say, the existing typical noise generation strategies could fail to protect customers' privacy for local time intervals. To address this problem, we develop a novel time-series pattern based noise generation strategy. Firstly, we analyse previous probability fluctuations and propose a group of time-series patterns for predicting future fluctuated probabilities. Then, based on these patterns, we present our strategy by forecasting future occurrence probabilities of real service requests and generating noise requests to reach about the same final probabilities in the next time interval. The simulation evaluation demonstrates that our strateg- can cope with these fluctuations to significantly improve the effectiveness of customers' privacy protection.
机译:云计算提供了一个开放的环境,客户可以按需付费的方式部署IT服务,同时节省了对自己IT基础架构的巨额资本投资。由于开放性,可能存在各种恶意服务提供商。这样的服务提供商可以在服务过程中记录来自客户的服务信息,然后共同推断出客户的私人信息。因此,从云计算安全性的角度来看,需要采取特殊的措施来保护客户端的隐私。在这方面,通过利用噪声数据,噪声混淆是一种有效的方法。例如,它生成噪声服务请求并将其注入到真实的客户服务请求中,这样,如果服务提供者的出现概率大致相同,则服务提供商将无法区分哪些请求是真实的。然而,现有的典型噪声产生策略主要集中在整个服务使用周期上,以实现大约相同的服务请求的最终出现概率。实际上,这样的概率可以在三个月的时间间隔内波动,并且可能与其他时间间隔明显不同。在这种情况下,服务提供商可能仍可以从特定时间间隔推断出客户的隐私,尽管从整个时间段来看不太可能。也就是说,现有的典型噪声生成策略可能无法在本地时间间隔内保护客户的隐私。为了解决这个问题,我们开发了一种新颖的基于时间序列模式的噪声产生策略。首先,我们分析了先前的概率波动,并提出了一组时间序列模式来预测未来的波动概率。然后,基于这些模式,我们通过预测实际服务请求的未来出现概率并生成噪声请求以在下一个时间间隔内达到大约相同的最终概率来提出我们的策略。仿真评估表明,我们的策略可以应对这些波动,从而显着提高客户隐私保护的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号